Return to search

Transient moisture characteristics of spruce plywood

In this thesis, the moisture characteristics of spruce plywood are studied experimentally and numerically with special attention given to moisture storage and release as the indoor humidity changes diurnally. This is referred to as the moisture buffering capacity. Two test facilities (a glass jar facility and a transient moisture transfer facility) are used to measure the moisture accumulation and temperature and relative humidity profiles within spruce plywood. These measured data are used to determine the moisture buffering capacity of spruce plywood and validate a one-dimensional transient numerical model that can be used to calculate the transient heat and moisture transfer in spruce plywood. There is good agreement between the measured and simulated results over the range of test variables investigated. </p><p>This validated numerical model is used to investigate the effect of initial conditions, boundary conditions, thickness and humidity step change on the moisture buffering capacity. In addition, sensitivity studies are performed to investigate the effect of variations in material properties used in the numerical model. The properties that are considered in these sensitivity studies are the sorption isotherm, effective thermal conductivity, heat of sorption and effective diffusion coefficient. These studies show that the sorption isotherm has the greatest effect on the moisture buffering capacity, as well as the temperature and relative humidity profiles within spruce plywood. For example, a ± 10% change in sorption isotherm has a ± 7%, ± 6% and ± 10% effect on the moisture buffering capacity, and the relative temperature and relative humidity change, respectively. </p><p>This thesis also verifies the moisture diffusivity property for spruce plywood, which was developed by Olutimayin and Simonson (2005) to account for moisture storage in cellulose insulation for a single step change in humidity. It was found that for spruce plywood, the moisture penetration depth may be over predicted by an order of magnitude when moisture storage is neglected using a transient analytic solution which does not include moisture storage.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-12222005-082100
Date22 December 2005
CreatorsOsanyintola, Olalekan Fatai
ContributorsTabil, Lope G., Sumner, David, Simonson, Carey J., Besant, Robert W.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-12222005-082100/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0017 seconds