Return to search

Efficient Adjacency Queries and Dynamic Refinement for Meshfree Methods with Applications to Explicit Fracture Modeling

Meshfree methods provide a more practical approach to solving problems involving large deformation and modeling fracture compared to the Finite Element Method (FEM). However meshfree methods are more computationally intensive compared to FEM, which can limit their practicality in engineering. Meshfree methods also lack a clear boundary definition, restricting available visualization techniques. Determining particle locations and attributes such that a consistent approximation is ensured can be challenging in meshfree methods, especially when employing h-refinement. The primary objective of this work is to address the limitations associated with computational efficiency, meshfree domain discretization, and h-refinement, including both placement of particles as well as determination of particle attributes. To demonstrate the efficacy of these algorithms, a model predicting the failure of laminated composite structures using a meshfree method will be presented.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-8541
Date22 June 2018
CreatorsOlliff, James
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations

Page generated in 0.0023 seconds