Return to search

Evaluation of the Aerodynamic Differences of a Balloon Shape and a Sphere Using Computational Fluid Dynamic Modeling in Fluent

While tracking balloons for wind characterization, there was a question about the theoretical rise rate and corresponding coefficient of drag of a balloon shape as compared to a sphere. Since there are many studies published detailing the drag on spherical shapes, the question of whether or not a balloon can be treated as a sphere begged to be answered.
In this study we apply Computational Fluid Dynamic (CFD) modeling to compare the aerodynamic behavior and drag of a sphere to that of a balloon as it moves through fluid at Reynolds numbers from 10,000 to 100,000.
Fluent CFD models are created and used to estimate the coefficient of drag (Cd) vs. Reynolds number (Re) for a sphere and for a balloon shape. Details are given for the meshed model creation and the simulation methods. Sphere model results are compared to data provided in published literature. Sphere and balloon model results are compared to each other.
The results of this study show that the drag on a balloon is not statistically different from a sphere. While there are differences in the flow characteristics over the two shapes, a spherical shape is a good approximation for a balloon shape.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1868
Date01 May 2011
CreatorsScholes, Daniel Burton
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0026 seconds