Return to search

Synthesis and Biological Activity of Aminoglycosides and 1,4-Naphthoquinone Derivatives

The research described in this dissertation is at the interface of organic chemistry and biology, and it aimed at designing and synthesizing biologically active molecules for the possible development of therapeutic agents. Spinal muscular atrophy is an incurable disease that affects 1 in every 6000 babies, making it the leading genetic cause of infant mortality. While no treatment is available, efforts are being taken to solve this issue. Part of the work outlined in this dissertation was carried out in collaboration with researchers from the University of Missouri to investigate a potential therapeutic for this disease. In addition, the continuous outbreak of diseases caused by bacteria demands for new and improved antibiotics that could help eradicate those pathogens. My research thus allowed me to discover molecules with interesting activity against bacteria for the possible development of potential antibacterial agents. Finally, my research also allowed me to develop potential agro fungicides, which are still very much needed nowadays. Many crop diseases are due to fungal infections,which globally cause enormous economic losses. The use of fungicides is still the main strategy to control these diseases. However, current agro fungicides show some limitations. This is illustrated with Fusarium head blight (FHB), a destructive and costly disease of wheat, barley and other small grains, whose economic losses in the Central United States alone were estimated to $2.7 billion.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2362
Date01 December 2012
CreatorsYatchang, Marina Fosso
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0028 seconds