Return to search

Fuel Performance Modeling of Reactivity-Initiated Accidents Using the BISON Code

The Fukushima Daiichi nuclear accidents in 2011 sparked considerable interest in the U.S. to develop new nuclear fuel with enhanced accident tolerance. Throughout the development of these new fuel concepts they will be extensively modeled using specialized computer codes and experimentally tested for a variety of different postulated accident scenarios. One accident scenario of interest, reactivity-initiated accident, is a nuclear reactor event involving a sudden increase in fission rate that causes a rapid increase in reactor power and temperature of the fuel which can lead to the failure of the fuel rods and are lease of radioactive material. The focus of this work will be on the fuel performance modeling of reactivity-initiated accidents using the BISON code being developed at Idaho National Laboratory. The overall goal of this work is to provide the best possible modeling predictions for future experimental tests. Accurate predictive capability modeling using BISON is important for safe operation of these tests and provides a cheaper alternative to the expensive experiments.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8007
Date01 December 2017
CreatorsFolsom, Charles Pearson
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0016 seconds