Return to search

Development and Characterization of Aqueous-Based Recombinant Spider Silk Protein Biomaterials with Investigations into Potential Applications

Spider silks are incredible natural materials that possess desirable combinations of strength, elasticity, weight, and robustness. Other properties such as biocompatibility and biodegradability further increase the worth of these materials. The possibility of farming spiders is impractical due to spiders’ natural behaviors. Modern biotechnologies have allowed for recombinant spider silk proteins (rSSps) to be produced without the use of spiders. However, the features responsible for spider silks impressive properties can cause difficulties with producing silk materials. A recently developed water-based and biomimetic solvation method has provided a solution to such difficulties and has also led to novel silk biomaterials. Most notable among these materials are; coatings, fibers, adhesives, films, foams, hydrogels, aerogels, capsules, and sponges. Many of these material possess specific properties that may be suitable for many commercial, industrial, and biomedical uses. This study has developed numerous spider silk biomaterials, identified their essential properties and features, provided preliminary evidence for various applications, and identified directions for future studies and uses.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8358
Date01 August 2018
CreatorsHarris, Thomas I.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0019 seconds