Return to search

Understanding Security Threats of Emerging Computing Architectures and Mitigating Performance Bottlenecks of On-Chip Interconnects in Manycore NTC System

Emerging computing architectures such as, neuromorphic computing and third party intellectual property (3PIP) cores, have attracted significant attention in the recent past. Neuromorphic Computing introduces an unorthodox non-von neumann architecture that mimics the abstract behavior of neuron activity of the human brain. They can execute more complex applications, such as image processing, object recognition, more efficiently in terms of performance and energy than the traditional microprocessors. However, focus on the hardware security aspects of the neuromorphic computing at its nascent stage. 3PIP core, on the other hand, have covertly inserted malicious functional behavior that can inflict range of harms at the system/application levels. This dissertation examines the impact of various threat models that emerges from neuromorphic architectures and 3PIP cores.
Near-Threshold Computing (NTC) serves as an energy-efficient paradigm by aggressively operating all computing resources with a supply voltage closer to its threshold voltage at the cost of performance. Therefore, STC system is scaled to many-core NTC system to reclaim the lost performance. However, the interconnect performance in many-core NTC system pose significant bottleneck that hinders the performance of many-core NTC system. This dissertation analyzes the interconnect performance, and further, propose a novel technique to boost the interconnect performance of many-core NTC system.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8575
Date01 May 2019
CreatorsRajamanikkam, Chidhambaranathan
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0059 seconds