Return to search

The Boltzmann equation : sharp Povzner inequalities applied to regularity theory and Kaniel & Shinbrot techniques applied to inelastic existence

This work consists of three chapters. In the first chapter, a brief overview is made on the history of the modern kinetic theory of elastic and dilute gases since the early stages of Maxwell and Boltzmann. In addition, I short exposition on the complexities of the theory of granular media is presented. This chapter has the objectives of contextualize the problems that will be studied in the remainder of the document and, somehow, to exhibit the mathematical complications that may arise in the inelastic gases (not present in the elastic theory of gases). The rest of the work presents two self-contained chapters on different topics in the study of the Boltzmann equation. Chapter 2 focuses in studying and extending the propagation of regularity properties of solutions for the elastic and homogeneous Boltzmann equation following the techniques introduced by A. Bobylev in 1997 and Bobylev, Gamba and Panferov in 2002. Meanwhile, chapter 3 studies the existence and uniqueness of the inelastic and inhomogeneous Cauchy problem of the Boltzmann equation for small initial data. A new set of global in time estimates, proved for the gain part of the inelastic collision operator, are used to implement the scheme introduced by Kaniel and Shinbrot in the late 70’s. This scheme, known as Kaniel and Shinbrot iteration, produces a rather simple and beautiful proof of existence and uniqueness of global solutions for the Boltzmann equation with small initial data. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17727
Date31 August 2012
CreatorsAlonso, Ricardo Jose, 1972-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0039 seconds