Return to search

Recent advances and challenges in antigen engineering & vaccine development

Vaccines play a vital role in public health by preventing infectious disease across the globe. Vaccine formulations represent a weakened form of a microbe or toxin that is injected into the human body to elicit an immune response, generating antibodies to protect against a future infection. To this day, it is a challenge to identify and engineer important antigens and epitopes to focus this immune response in a safe and effective manner. The example of Bordetella pertussis is used to highlight the problems and lessons learned in designing a vaccine for this global epidemic. In particular, this review will focus on the advantages and disadvantages of chemical versus genetic detoxification and whole cell versus acellular vaccines in the context of pertussis. The latter part of this review will provide a summary of general strategies, such as epitope mapping and manipulation, synthesis of truncated variants, reverse vaccinology, and structural vaccinology, that have been successful in addressing increasingly complex diseases. Collectively, these techniques provide an invaluable set of tools to focus the immune response by finding and engineering specific antigens and epitopes. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/26243
Date02 October 2014
CreatorsKornahrens, William Joseph
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0023 seconds