Economic issues in distributed computing

On the Internet, one of the essential characteristics of electronic commerce is the integration of large-scale computer networks and business practices. Commercial servers are connected through open and complex communication technologies, and online consumers access the services with virtually unpredictable behavior. Both of them as well as the e-Commerce infrastructure are vulnerable to cyber attacks. Among the various network security problems, the Distributed Denial-of-Service (DDoS) attack is a unique example to illustrate the risk of commercial network applications. Using a massive junk traffic, literally anyone on the Internet can launch a DDoS attack to flood and shutdown an eCommerce website. Cooperative technological solutions for Distributed Denial-of-Service (DDoS) attacks are already available, yet organizations in the best position to implement them lack incentive to do so, and the victims of DDoS attacks cannot find effective methods to motivate the organizations. Chapter 1 discusses two components of the technological solutions to DDoS attacks: cooperative filtering and cooperative traffic smoothing by caching, and then analyzes the broken incentive chain in each of these technological solutions. As a remedy, I propose usage-based pricing and Capacity Provision Networks, which enable victims to disseminate enough incentive along attack paths to stimulate cooperation against DDoS attacks. Chapter 2 addresses possible Distributed Denial-of-Service (DDoS) attacks toward the wireless Internet including the Wireless Extended Internet, the Wireless Portal Network, and the Wireless Ad Hoc network. I propose a conceptual model for defending against DDoS attacks on the wireless Internet, which incorporates both cooperative technological solutions and economic incentive mechanisms built on usage-based fees. Cost-effectiveness is also addressed through an illustrative implementation scheme using Policy Based Networking (PBN). By investigating both technological and economic difficulties in defense of DDoS attacks which have plagued the wired Internet, our aim here is to foster further development of wireless Internet infrastructure as a more secure and efficient platform for mobile commerce. To avoid centralized resources and performance bottlenecks, online peer-to-peer communities and online social network have become increasingly popular. In particular, the recent boost of online peer-to-peer communities has led to exponential growth in sharing of user-contributed content which has brought profound changes to business and economic practices. Understanding the dynamics and sustainability of such peer-to-peer communities has important implications for business managers. In Chapter 3, I explore the structure of online sharing communities from a dynamic process perspective. I build an evolutionary game model to capture the dynamics of online peer-to-peer communities. Using online music sharing data collected from one of the IRC Channels for over five years, I empirically investigate the model which underlies the dynamics of the music sharing community. Our empirical results show strong support for the evolutionary process of the community. I find that the two major parties in the community, namely sharers and downloaders, are influencing each other in their dynamics of evolvement in the community. These dynamics reveal the mechanism through which peer-to-peer communities sustain and thrive in a constant changing environment. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/3254
Date28 August 2008
CreatorsHuang, Yun, 1973-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0023 seconds