Return to search

Development and application of a coupled geomechanics model for a parallel compositional reservoir simulator

For a stress-sensitive or stress-dependent reservoir, the interactions between its
seepage field and in situ stress field are complex and affect hydrocarbon recovery. A
coupled geomechanics and fluid-flow model can capture these relations between the fluid
and solid, thereby presenting more precise history matchings and predictions for better
well planning and reservoir management decisions. A traditional reservoir simulator
cannot adequately or fully represent the ongoing coupled fluid-solid interactions during
the production because of using the simplified update-formulation for porosity and the
static absolute permeability during simulations. Many researchers have studied
multiphase fluid-flow models coupled with geomechanics models during the past fifteen
years. The purpose of this research is to develop a coupled geomechanics and
compositional model and apply it to problems in the oil recovery processes. An
equation of state compositional simulator called the General Purpose Adaptive Simulator
(GPAS) is developed at The University of Texas at Austin and uses finite difference / finite control volume methods for the solution of its governing partial differential
equations (PDEs). GPAS was coupled with a geomechanics model developed in this
research, which uses a finite element method for discretization of the associated PDEs.
Both the iteratively coupled solution procedure and the fully coupled solution procedure
were implemented to couple the geomechanics and reservoir simulation modules in this
work. Parallelization, testing, and verification for the coupled model were performed on
parallel clusters of high-performance workstations. MPI was used for the data exchange
in the iteratively coupled procedure. Different constitutive models were coded into
GPAS to describe complicated behaviors of linear or nonlinear deformation in the
geomechanics model. In addition, the geomechanics module was coupled with the dual
porosity model in GPAS to simulate naturally fractured reservoirs. The developed
coupled reservoir and geomechanics simulator was verified using analytical solutions.
Various reservoir simulation case studies were carried out using the coupled
geomechanics and GPAS modules. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/7675
Date03 June 2010
CreatorsPan, Feng
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0014 seconds