Return to search

Application of real options to valuation and decision making in the petroleum E&P industry

This study is to establish a binomial lattice method to apply real options theory to valuation and decision making in the petroleum exploration and production industry with a specific focus on the switching time from primary to water flooding oil recovery. First, West Texas Intermediate (WTI) historical oil price evolution in the past 25 years is studied and modeled with the geometric Brownian motion (GBM) and one-factor mean reversion price models to capture the oil price uncertainty. Second, to conduct real options evaluation, specific reservoir simulations are designed and oil production profile for primary and water flooding oil recovery for a synthetic onshore oil reservoir is generated using UTCHEM reservoir simulator. Third, a cash flow model from producing the oil reservoir is created with a concessionary fiscal system. Finally, the binomial lattice real options evaluation method is established to value the project with flexibility in the switching time from primary to water flooding oil recovery under uncertain oil prices. The research reaches seven conclusions: 1) for the GBM price model, the assumptions of constant drift rate and constant volatility do not hold for WTI historical oil price; 2) one-factor mean reversion price model is a better model to fit the historical WTI oil prices than the GBM model; 3) the evolution of historical WTI oil prices from January 2, 1986 to May 28, 2010 was according to three price regimes with different long run prices; 4) the established real options evaluation method can be used to identify the best time to switch from primary to water flooding oil recovery using stochastic oil prices; 5) with the mean reversion oil price model and the most updated cost data, the real options evaluation method finds that the water flooding switching time is earlier than the traditional net present value (NPV) optimizing method; 6) the real options evaluation results reveals that most of time water flooding should start when oil price is high, and should not start when oil price is low; and 7) water flooding switching time is sensitive to oil price model to be used and to the investment and operating costs. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-12-2549
Date17 July 2012
CreatorsXu, Liying, 1962-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0021 seconds