Return to search

Function and regulation of Drosophila Epsin in notch signaling

Epsin is an endocytic protein that binds Clathrin, the plasma membrane, Ubiquitin, and also a variety of other endocytic proteins through well-characterized motifs. Although Epsin is a general endocytic factor, genetic analysis in Drosophila and mice revealed that Epsin is essential specifically for internalization of ubiquitinated transmembrane ligands of the Notch receptor, a process required for Notch activation. How Epsin promotes ligand endocytosis and thus Notch signaling is unclear. Here, by generating Drosophila lines containing transgenes that express a variety of different Epsin deletion and substitution variants, I tested each of the five protein or lipid interaction modules of Epsin for a role in Notch activation by each of the two Drosophila ligands, Serrate and Delta. here are five main results of this work that impact present thinking about endocytic machinery/Epsin, Epsin/ligand, or ligand/receptor interactions at the plasma membrane. First, I discovered that deletion or mutation of both UIMs destroys Epsin’s function in Notch signaling and has a greater negative effect on Epsin’s ability to function than removal of any other module type. Second, only one of the two UIMs of Epsin is essential. Third, the lipid-binding function of the ENTH domain is required for maximal Epsin activity. Fourth, although the C-terminal Epsin modules that interact with Clathrin, the adapter protein complex AP-2, or endocytic accessory proteins are necessary collectively for Epsin activity, their functions are highly redundant. Finally, I detected no ligand-specific requirements for Epsin modules. Most unexpected was the finding that Epsin’s Clathrin binding motifs were dispensable. All of these observations are consistent with a model where Epsin’s essential function in ligand cells is to link ubiquitinated Notch ligands to Clathrin-coated vesicles through other Clathrin adapter proteins. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-12-4767
Date26 January 2012
CreatorsXie, Xuanhua
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.002 seconds