Return to search

Comprehensive Analysis of the Spatial Distribution of Missense Variants in Protein Structures Reveals Patterns Predictive of Pathogenicity

The spatial distribution of genetic variation within proteins is shaped by evolutionary constraint and thus can provide insights into the functional importance of protein regions and the potential pathogenicity of protein alterations. To facilitate the spatial analysis of coding variation in protein structure, we develop PDBMap, an automated pipeline for mapping genetic variants into all solved and predicted protein structures. We then comprehensively evaluate the 3D spatial patterns of constraint on human germline and somatic variation in 4,568 solved protein structures. Different classes of coding variants have significantly different spatial distributions. Neutral missense variants exhibit a range of 3D constraint patterns, with a general trend of spatial dispersion driven by constraint on core residues. In contrast, germline and variants are significantly more likely to be clustered in protein structure space. Finally, we demonstrate that this difference in the spatial distributions of disease-associated and benign germline variants provides a signature for accurately classifying variants of unknown significance (VUS) that is complementary to current approaches for VUS classification.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-02272017-124227
Date16 March 2017
CreatorsSivley, Robert Michael
ContributorsJohn A. Capra, William S. Bush, Jens Meiler
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-02272017-124227/
Rightsrestrictone, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0082 seconds