Return to search

The Essential Role of p73 in Multiciliated Cell Development

The pivotal role of the transcription factor p53 in tumor suppression remains unchallenged; however, the role of its family member, p73, in normal cellular function and tumorigenesis is far from certain. The goal of this dissertation is to better understand the mechanisms that regulate p73 function as well as develop significant insight into the biological systems that p73 controls through its transcriptional activity. To elucidate these goals we investigated biological systems in which p73 activity is essential as well as identified putative protein-protein interactions that regulate p73.
¬¬¬ In this dissertation, we discovered that that p73 is a necessary transcriptional regulator of the process of ciliary biogenesis within multiciliated cells (MCCs). Loss of MCCs provided a unifying mechanism for many phenotypes observed in p73 knockout mice including hydrocephalus, hippocampal dysgenesis, sterility and chronic inflammation/infection of lung, middle ear and sinus. We found p73 is expressed in MCCs as well as co-expressed with p63 in a subset of basal, tracheal epithelial cells, suggesting that p73 âmarksâ these cells for MCC differentiation. Furthermore, through in situ p63/p73 ChIP-seq of the murine trachea, we identified genomic binding sites in proximity to genes that regulate MCC differentiation, from cell cycle arrest (Cdkn1a) and amplification of centrioles (Myb) to apical docking of centrioles with components that make up the axoneme [Foxj1 and Traf3ip1]. By combining our ChIP-seq data with RNA-seq of tracheal epithelial cells, we found evidence for p73-dependent, direct and indirect transcriptional regulation of a broad network of cilia-associated genes. In sum, p73 is essential for MCC differentiation, functions as a critical regulator of a transcriptome required for MCC differentiation and, like p63, has an essential role in development of tissues. Research results presented in this dissertation are not only significant value to the understanding of p73 but also to the understanding of MCC differentiation. This work lays essential groundwork for future studies investigating roles and regulation of p73 within the correct biological contexts.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03182016-102733
Date18 March 2016
CreatorsMarshall, Clayton Benjamin
ContributorsJennifer A. Pietenpol
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-03182016-102733/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds