Return to search

Enhancing Light-matter Interaction in Ultrathin Films using Optical Nanostructures

Ultrathin films including two-dimensional materials and transparent conductive oxide nano-films are excellent candidates for future optoelectronic devices. However, external quantum efficiencies of the ultrathin film-based devices are typically limited due to their small physical thickness. The practical application of these ultrathin films therefore requires integration with optical nanostructures to enhance light-matter interaction in the thin films. In this work, I will present my efforts to modify the interaction between light and ultrathin films using different approaches, including hot electron injection, integration with Fano-resonant photonic crystals, and use a hybrid mode combining an epsilon-near-zero mode with a Huygensâ dielectric metasurface. The optoelectronic devices demonstrated based on these integrations result in significant increases in absorption, photoresponsivity, and modulation depth.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03282016-105353
Date09 April 2016
CreatorsWang, Wenyi
ContributorsJason G. Valentine, Sharon M. Weiss, Richard F. Haglund Jr., Yaqiong Xu, Kirill Bolotin
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-03282016-105353/
Rightsrestrictone, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0022 seconds