Return to search

Methods for Probing New Physics at High Energies

This thesis covers two distinct topics: integral dispersion relations (IDRs) and ultra high energy cosmic ray (UHECR) anisotropy.
Many models of electroweak symmetry breaking predict new physics scales near LHC energies. Even if these particles are too massive to be produced on shell, it may be possible to infer their existence through the use of IDRs. Making use of Cauchy's integral formula and the analyticity of the scattering amplitude, IDRs are sensitive to changes in the cross section at all energies. We find that a sudden order one increase in the cross section can be detected well below the threshold energy. For two more physical models, the reach of the IDR technique is greatly reduced. The peak sensitivity for the IDR technique is shown to occur when the new particle masses are near the machine energy. Thus, IDRs do extend the reach of the LHC, but only to a window around M_X^2~s_LHC.
Determining anisotropies in the arrival directions of UHECRs (>5e19 eV) is an important task in astrophysics. Spherical harmonics are a useful measure of anisotropy. The two lowest nontrivial spherical harmonics, the dipole and the quadrupole, are of particular interest, since they encapsulate a single source and a planar source. The best current UHECR experiments are all ground based, with highly nonuniform exposures which increases the complexity and error in inferring anisotropies. The two main advantages of space based observation of UHECRs are the increased field of view and the full sky coverage with uniform systematics. It turns out that there is an optimal latitude, which runs near the two largest experiments, for an experiment at which nonuniform exposure does not diminish the inference of the quadrupole moment. Consequently, assuming a quadrupole distribution, these experiments can reconstruct a quadrupole distribution to a high precision, without concern for their partial sky exposure. We then investigate the reach of a full sky experiment to detect anisotropies compared to these partial sky experiments. Simulations with dipoles and quadrupoles quantify the advantages of space based, all sky coverage.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-07052016-131020
Date23 July 2016
CreatorsDenton, Peter Bennert
ContributorsThomas J. Weiler, Robert J. Scherrer, Thomas W. Kephart, Andreas A. Berlind, M. Shane Hutson
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-07052016-131020/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds