Return to search

Challenging Conventional Approaches to Energy Storage: Direct Integration of Energy Storage into Solar Cells, the Use of Scrap Metals to Build Batteries, and the Development of Multifunctional Structural Energy Storage Composites

Since the development of batteries by Edison and Volta, energy storage has become an integral part of our technology. As the energy storage devices we manufacture, research and develop new energy storage systems has been standardized. This dissertation present three alternative approaches to developing energy storage devices which could completely change the paradigm by which we manufacture and use energy storage. First, I present my work in developing energy storage devices that can be directly integrated into the back of Silicon photovoltaics. This includes initial proof of concept of direct integration of porous Si supercapacitors followed by investigations into high rate faradaic chemical reactions with porous Si and coated porous Si. These faradaic reactions have the possibility of higher energy storage and power matching the performance of silicon photovoltaics. Second, I demonstrate the feasibility of using scrap metals to make high rate batteries that can be paired with photovoltaics by anodizing scrap steel and brass using simple manufacturing methods compatible with do it yourself manufacturing. Third, I will present my work in developing multifunctional structural supercapacitor composites. I demonstrate the ability to measure in-situ the electrochemical response of solid state electrolyte and supercapacitors. I follow this initial work up with the realization of a structural supercapacitor with the mechanical performance approaching that of commercial structural composites and energy storage performance approaching commercial supercapacitors.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-11212016-162831
Date22 November 2016
CreatorsWestover, Andrew Scott
ContributorsJason Valentine, Shihong Lin, Amrutur Anilkumar, Douglas Adams, Cary L. Pint
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-11212016-162831/
Rightsrestrictone, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.013 seconds