Return to search

Nonlinear Near-Field Dynamics of Plasmonic Nanostructures

We present three experiments designed to explore the physics of nanostructured materials in nonlinear optics. We utilize both photon and electron-beam excitations on systems with local densities of states specifically designed to generate small mode volumes. The first experiment uses planar arrays of gold Archimedean nanospirals to create asymmetric electric-field profiles for efficient second-harmonic generation (SHG). This nanostructure exhibits two-dimensional chirality and record SHG efficiency per unit volume. In the optical-field-induced second harmonic experiment, we employ an array of serrated gold nanogaps coupled to a polymer film to temporally resolve the change in the second-order nonlinear susceptibility of the polymer with 100 attosecond time resolution while separaing the nonlinear signals from the polymer and plasmonic emission using a spatial light modulator. Finally, we report the first demonstration of a quantum emitter in a dressed state using an electron beam to excite neutral nitrogen-vacancy (NV0) centers in a diamond nanocrystal. We deduce the presence of Rabi oscillations from the ensemble of NV0 centers at room temperature by measuring the second-order autocorrelation function of the cathodoluminescence signal that arises from the beam-induced plasmon interaction with the NV0 centers. The effects of phonon scattering on the autocorrelation amplitudes are revealed by subtracting the zero-phonon contribution to the cathodoluminescence spectrum. In summary, we have demonstrated three unique approaches for generating strong nonlinearities in nanoscale systems by manipulating the local density of states and following the dynamical evolution of these states in the time domain.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-12012016-141356
Date01 December 2016
CreatorsDavidson, Roderick Belden II
ContributorsSandra J. Rosenthal, Kalman Varga, Yaqiong Xu, Jason G. Valentine, Benjamin J. Lawrie, Richard F. Haglund Jr.
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-12012016-141356/
Rightsrestrictone, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0013 seconds