Fishing Economic Growth Determinants Using Bayesian Elastic Nets

We propose a method to deal simultaneously with model uncertainty and correlated regressors in linear regression models by combining elastic net specifications with a spike and slab prior. The estimation method nests ridge regression and the LASSO estimator and thus allows for a more flexible modelling framework than existing model averaging procedures. In particular, the proposed technique has clear advantages when dealing with datasets of (potentially highly) correlated regressors, a pervasive characteristic of the model averaging datasets used hitherto in the econometric literature. We apply our method to the dataset of economic growth determinants by Sala-i-Martin et al. (Sala-i-Martin, X., Doppelhofer, G., and Miller, R. I. (2004). Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. American Economic Review, 94: 813-835) and show that our procedure has superior out-of-sample predictive abilities as compared to the standard Bayesian model averaging methods currently used in the literature. (authors' abstract) / Series: Research Report Series / Department of Statistics and Mathematics

Identiferoai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:3213
Date09 1900
CreatorsHofmarcher, Paul, Crespo Cuaresma, Jesus, Grün, Bettina, Hornik, Kurt
PublisherWU Vienna University of Economics and Business
Source SetsWirtschaftsuniversität Wien
LanguageEnglish
Detected LanguageEnglish
TypePaper, NonPeerReviewed
Formatapplication/pdf
Relationhttp://statmath.wu.ac.at/, http://epub.wu.ac.at/3213/

Page generated in 0.002 seconds