Return to search

Factors influencing arbovirus transmission: vector competence and the effects of virus infection on repellent response, oxidative stress, and glutathione-S-transferase activity

Zika (ZIKV), La Crosse (LACV), and Cache Valley (CVV) viruses are mosquito-vectored diseases that cause significant morbidity and mortality in humans and animals. Transmission of these viruses are dependent on numerous factors including vector competence and the effects of mosquito-virus interactions. We conducted vector competence studies of local Aedes and Culex mosquitoes for ZIKV and CVV, and found that all Aedes mosquitoes were competent for CVV and only Aedes albopictus and Aedes japonicus were competent for ZIKV. Vector competence for CVV was dose-dependent, where mosquitoes orally infected with high titers developed higher transmission rates. We also found that vector competence for ZIKV was limited by midgut and salivary gland barriers. Second, we looked at the effects of LACV and ZIKV infection on repellent response in Aedes mosquitoes and found that infected mosquitoes were refractory to low concentrations of DEET, picaridin, and PMD. Increasing concentrations of the repellents to ≥10% was able to increase percent protection (%p) against infected and uninfected mosquitoes. Lastly, we determined the effects of ZIKV and LACV infection on oxidative stress and glutathione-S-transferase (GST) activity in Aedes albopictus. Virus infection had no effect on oxidative stress, but GST activity was significantly different for mosquitoes 3-days post-exposure. We found that oxidative stress levels and GST activity had an inverse relationship for infected and uninfected mosquitoes, where oxidative stress decreased and GST activity increased over the 10-day test period. This indicates that GSTs may aid in controlling byproducts of oxidative stress. The results from this entire study identified competent vectors for emerging arboviruses and demonstrated the behavioral and physiological effects of virus infection in the mosquito vector. / Doctor of Philosophy / Zika (ZIKV), La Crosse (LACV), and Cache Valley (CVV) viruses are transmitted by mosquitoes and can make humans and animals very sick. There are many biological factors that determine if a mosquito can transmit a virus and these viruses can change the biology of a mosquito. We conducted laboratory studies to see if Aedes and Culex mosquitoes can transmit ZIKV and CVV. We found that all Aedes mosquitoes were able to transmit CVV and only the Asian tiger mosquito and Asian rock pool mosquito were able to transmit ZIKV. Mosquitoes infected with high amounts of CVV developed higher transmission rates. We also found that transmission of ZIKV was limited by barriers in the mosquito midgut and salivary glands. Second, we looked at the effects of LACV and ZIKV infection on how Aedes mosquitoes respond to repellents and found that infected mosquitoes were less sensitive to low concentrations of DEET, picaridin, and PMD. Increasing concentrations of the repellents to 10% or higher was able to provide adequate protection against infected and uninfected mosquitoes. Lastly, we determined the effects of ZIKV and LACV infection on oxidative stress and glutathione-S-transferase (GST) activity in the Asian tiger mosquito. Virus infection did not change oxidative stress, but GST activity was higher in infected mosquitoes tested after 3 days after infection. We found that oxidative stress decreased and GST activity increased over the 10-day test period. This indicates that GSTs may help control damaging products from oxidative stress. The results from this entire study identified what mosquitoes were able to transmit emerging mosquito-borne viruses and demonstrated the biological effects of virus infection in the mosquitoes.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/104393
Date31 January 2020
CreatorsChan, Kevin Ki Fai
ContributorsEntomology, Paulson, Sally L., Brewster, Carlyle C., Bertke, Andrea S., Auguste, Albert J., Marek, Paul E.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0027 seconds