Return to search

Investigating the Effects of Lithology on Landscape Evolution Processes across Scales

Geomorphologists have long observed the influence of lithology on landscape form and evolution. However, the specific mechanisms by which this is accomplished are not well characterized. Here, I investigate the role of lithology in landscape evolution processes across spatial and temporal scales and geomorphic domains, to progress our understanding of the basic controls on the processes which shape Earth's surface. These investigations were carried out within the Valley and Ridge province of the Appalachian Mountains, where contrasts in strength of underlying lithologies (juxtaposed by Alleghanian deformation) exert a clear, dominant control on the fabric of the landscape, providing an excellent opportunity to study the influence of lithology on a variety of landscape evolution processes.

First, I assess the geomorphic function of boulders found on hillslopes and channels in the Valley and Ridge province of the Appalachians, which are sourced from resistant lithologies capping ridgelines. High-resolution UAV surveys and field mapping of boulder distributions and characteristics reveal that boulders are abundant on hillslopes and highly concentrated in channels, often trap sediment upslope, and appear to be long-lived. These observations suggest that boulders act as armor for hillslopes and channels, shielding weaker underlying units from erosion and inhibiting fluvial incision, and therefore play an important role in preserving topography in the Valley and Ridge landscape, highlighting a specific mechanism by which lithology exerts an influence on topography in this setting. Second, I investigate the relative importance of rock strength and discontinuity spacing in setting fluvial bedrock erodibility by comparing knickpoint and non-knickpoint bedrock, which correspond to end-member erodibility cases, and assess how lithology impacts knickpoint expression. Detailed field surveys of 21 lithologic knickpoints, surrounding non-knickpoint reaches, and corresponding bedrock properties reveal three key outcomes: 1) discontinuity spacing is a stronger predictor of knickpoint occurrence, and therefore more significant in setting bedrock erodibility in this setting, confirming quantitatively the hypothesis that discontinuities exert a dominant control on fluvial erodibility, 2) knickpoint expression is a function of the unique combination of characteristics within a given stratigraphic interval, and therefore highly complex and specific to local conditions, implying that knickpoint morphology should be interpreted with extreme caution, and 3) because all 21 study knickpoints occur within the same unit, inter-unit heterogeneity must be accounted for before lithologic influence on channel profile convexities can be ruled out, rather than comparing to geologic map contacts. These findings represent an important contribution towards a more functional understanding of the influence of lithology on fluvial bedrock incision processes. / Doctor of Philosophy / It has long been observed that underlying geology has a strong impact on the shape of the surrounding landscape and influences the erosional processes that act within that landscape. However, though the importance of rock type in shaping landscapes is recognized, the specific mechanisms by which this is accomplished are not well understood. The work presented here investigates the role of rock type and rock properties in landscape evolution processes in both hillslope and river environments within the Valley and Ridge Province of the Appalachian Mountains. This setting is ideally suited for investigating the role of rock type on landscape evolution processes because of the wide variation in rock types present in this setting, which exert a strong influence on local topography (e.g., strong rocks form ridges while weak rocks underlie valleys).

First, I mapped the distribution of large boulders on local Valley and Ridge slopes and mountain streams to assess the potential for these boulders to play a role in preserving local topography. Results show that boulders are sourced from resistant rock types found along ridgelines, and are abundant on hillslopes and highly concentrated in channels. Boulders also trap sediment upslope and appear to remain in place for long periods of time. These observations suggest boulders play an important role in slowing erosion of weaker rock types underlying hillslopes and channels, and therefore aid in preserving topography in this setting. Second, I conducted detailed surveys of local small-scale waterfalls and surrounding flat river reaches and compared properties of the bedrock between these locations to better understand how bedrock properties influence erodibility. In this setting, waterfalls often signify strong underlying bedrock relative to the rock beneath flat river reaches, so comparing bedrock properties between these areas should give insight into how properties like rock strength and bed thickness impact how erodible the bedrock is. Results show that bed thickness is the most important variable impacting bedrock erodibility in this setting, and that waterfall appearance is a product of the unique combination of bedrock properties within a given area. These results are important for improving our ability to model natural landscapes and erosional processes, and for developing a more complete understanding for the relationships between rock type and river morphology.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/104740
Date26 August 2021
CreatorsChilton, Kristin Danielle
ContributorsGeosciences, Spotila, James A., Romans, Brian W., Eriksson, Kenneth A., Strom, Kyle Brent, Prince, Philip S.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0023 seconds