Return to search

Improving Water Security with Innovation and Transition in Water Infrastructure: From Emergence to Stabilization of Rainwater Harvesting in the U.S.

Globally, two-thirds of the population face significant water shortages and eighty percent of the U.S. states' water managers predict water shortages in the near future. Additionally, the current centralized system in the United States is facing significant problems of scarcity, groundwater depletion, high energy consumption and needs a trillion dollars investment in repairs, replacement, and expansion. Furthermore, due to increased urban/suburban development, runoff (stormwater) pollutes our waterways and is causing increased flooding. The status quo is unsustainable in its present form and the water security of the nation is at risk. Fortunately, in recent decades there has been a resurgence in the use of a millenniums old approach, rainwater harvesting (RWH), that if deployed broadly, will mitigate those issues created by the current centralized municipal water system and the expanding development of our cities, suburbs, and towns reducing permeable surface area and lower water security vulnerabilities. This study enlists Multi-Level Perspective (MLP) to examine the transitioning that is occurring from the current centralized municipal water system to one in which it is significantly complemented by an alternative water source, RWH. MLP posits that pressures originating in the broader landscape exerts pressures on the existing regime, as well as the community as a whole, creating an opportunity for the niche to emerge and either replace or change the regime. In the case of RWH, the myriad of pressures are only partially placed on the current centralized water supply regime providing them less pressure to change. Alongside water shortages another significant pressure being placed on the public and governing authorities is increased flooding and pollution resulting in the RWH niche emerging in the construction industry. In response to these pressures a RWH niche formed, largely outside of the existing water supply regime, and grew until it was joined by actors within the regime (e.g., plumbers, plumbing engineers, standards development organizations). This research is framed using MLP's three phases Start-up (niche), Acceleration, and Stabilization. This dissertation does three things. First it shows the internal processes occurring between the MLP levels (landscape, sociotechnical regime, and niche) and mechanisms created that foster the broader adoption of RWH. Secondly, it reveals that while the incumbent regime is not being significantly influenced by the RWH niche, the construction industry is embracing RWH (especially the commercial sector) and following the MLP pathway of Reconfiguration. Third, it looks at RWH in a phase of stabilization. / Doctor of Philosophy / Today the world, as well as the United States, faces significant water problems. These problems include scarcity, groundwater depletion, high energy consumption, and is in need of a trillion dollars to repair or replace US water infrastructure. Additionally, due to urban sprawl and diminishment of permeable surfaces, runoff is a problem causing flooding and pollution. One mitigation is the use of a millennium old technology, rainwater harvesting (RWH). This research uses Multi-Level Perspective (MLP) framework to examine the transition occurring today in the construction industry to build sustainable RWH into new construction, especially commercial buildings. This research examines the dynamic processes and the mechanisms used to grow the RWH niche and then accelerate its adoption. Those mechanisms include building demonstration projects, manuals, standards, and incentive programs. This research also looks at RWH in the U.S. Virgin Islands where RWH has been mandated since 1964. The practical value of this research is to provide policy makers insight into the useful mechanisms aiding a transition to sustainable infrastructure. The theoretical value is that it reveals a transition occurring outside of the dominate regime, the centralized water suppliers, in the construction industry. Additionally, it shows that the creation of RWH standards and the administration of building code has created a new form of water governance.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106640
Date12 November 2021
CreatorsReams, Gary A.
ContributorsScience and Technology Studies, Allen, Barbara L., Schmid, Sonja, Tomblin, David Christian, Abbate, Janet E.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0026 seconds