Return to search

Preference Construction and Decision-Making for Green Infrastructure: How Do Behavioral Interventions Influence Choice and Neurocognition?

"Nature-based solutions", such as green stormwater infrastructure, take advantage of natural systems to tackle the increasing challenges facing the built environment. Green infrastructure is effective in reducing stormwater runoff for urban stormwater management using connected green space. Green infrastructure also delivers multiple benefits to the community (e.g., increased quality of life and public health) and environment (e.g., enhanced biodiversity, less energy use, and reduced urban heat island effect), which is adaptive to the changing climate. However, the pace and the scale of green infrastructure implementation are still not on track with the much-needed change in the urban built environment. Policy barriers, resources barriers, governance barriers, and cognitive barriers are limiting the practice. Cognitive barriers are cited as the most critical barrier because most of the barriers limiting green infrastructure stem from and are intensified by human cognition during the design and decision-making process for infrastructure. Stakeholders involved in the decision-making process for green infrastructure must weigh the perceived risks and benefits that green infrastructure provides. This dissertation aims to better understand how stakeholders perceive green infrastructure, how much they weigh risks and benefits, and test interventions to aid the decision-making process to promote more green infrastructure design. Both a stated preference survey with discrete choice modeling and two sets of experiments using neuroimaging to measure the change in neurocognition were used to explore preference construction and decision-making about green infrastructure. A sample of the public (N=946) across the U.S. participated in the survey and reported their perceptions of risk and benefit about green infrastructure. The result highlights that perceived higher risk of green infrastructure reduced people's preference for green infrastructure. In contrast, perceived higher benefit, age, education, and the use of a rating system to measure sustainability outcomes firstly contribute to people's preference construction for green infrastructure. Engineering students who were trained in stormwater infrastructure design (N=60) participated in a stormwater infrastructure design scenario. Change in students' neurocognition was measured when students made judgments and decisions between a green infrastructure design option and a conventional stormwater infrastructure design option. Two interventions, (1) telling students about a municipal resolution in support of green infrastructure and (2) priming students to think about sustainable design before evaluating design options, were tested to change perceptions about risk and benefit of stormwater design options. The results found that telling decision-makers about a green infrastructure resolution changed their neurocognition when processing perceived risk and reduced the perceived risk they associated with green infrastructure. The results also found that priming decision-makers to think about sustainable design with a rating system for sustainability significantly decreased their cognitive load when evaluating the benefits of green infrastructure and increased their stated benefits associated with green infrastructure. These findings demonstrate the effects of relatively simple choice modifications to promote more green infrastructure. The results provide insights for policy-makers, engineers, and other stakeholders involved in the early-phase decisions on effective practice to modify human choice when facing challenges with sustainable and resilient design. / Doctor of Philosophy / Green stormwater infrastructure uses connected green space to absorb and filter excessive stormwater runoff in the environment where humans live. Green infrastructure also brings multiple benefits, such as increased quality of life and public health, habitats to more creatures, and less energy use. However, the pace and the scale of green infrastructure implementation are still limited. Barriers in policy, resources, governance, and human cognition are preventing the implementation of green infrastructure. Cognitive barriers are believed to be the most critical barrier because they intensify all other barriers during the design and decision-making process for infrastructure. Stakeholders involved in the decision-making process for green infrastructure must weigh the perceived risks and benefits that green infrastructure provides. This dissertation aims to better understand how stakeholders perceive green infrastructure, how much they weigh risks and benefits, and test interventions to aid the decision-making process to promote more green infrastructure design. Both a survey with choice modeling and experiments using neuroimaging to measure the change in brain activity were used to explore preference construction and decision-making about green infrastructure. 946 people across the U.S. participated in the survey and reported their perceptions of risk and benefit about green infrastructure. The result highlights that perceived higher risk of green infrastructure reduced people's preference for green infrastructure. In contrast, perceived higher benefit, age, education, and the use of a rating system to measure sustainability outcomes positively contribute to their preference construction for green infrastructure. 60 Engineering students who were trained in stormwater infrastructure design participated in a stormwater infrastructure design scenario. Change in students' brain activity was measured when they made judgments and decisions between a green infrastructure design option and a conventional stormwater infrastructure design option. Two interventions, (1) telling students about a municipal resolution in support of green infrastructure and (2) priming students to think about the sustainable design before evaluating design options, were tested to change perceptions about the risk and benefit of stormwater design options. The results found that telling decision-makers about a green infrastructure resolution changed their brain activity when evaluating risk and reduced the perceived risk they associated with green infrastructure. The results also found that priming decision-makers to think about sustainable design with a rating system for sustainability significantly decreased their cognitive efforts when evaluating the benefits of green infrastructure and increased their stated benefits associated with green infrastructure. These findings demonstrate such relatively simple choice modifications are effective to promote more green infrastructure. Stakeholders who are involved in the early-phase decisions can take advantage of the findings about the effective practice to modify human choice when facing sustainable design challenges.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106791
Date30 November 2021
CreatorsHu, Mo
ContributorsCivil and Environmental Engineering, Shealy, Earl Wade, Paige, Frederick, Smith, Alexander Charles, Garvin, Michael J.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds