Return to search

Exploring Aethina tumida Biology and the Impacts of Environmental Factors to Generate Novel Management Strategies

The small hive beetle (Aethina tumida) is an invasive pest from sub-Saharan Africa that has posed increasing threats to European honey bee (Apis mellifera) colonies in the United States over the past two decades. While control has been attempted, consistently effective management strategies still not been developed. This study sought to explore novel experimental methods to better understand and use A. tumida biology to target this pest. One aspect of A. tumida biology that has emerged as potential basis for improved control is olfactory manipulation, which could be used to disrupt beetles as they seek out A. mellifera colonies. Through olfactometry and electroantennography, key volatiles in A. tumida attraction and repulsion were tested and sensitivity of A. tumida to several attractants and repellents was quantified on behavioral and physiological levels. An additional source of attractive volatiles is the A. tumida fungal symbiont Kodamaea ohmeri, which ferments larval waste and is present throughout the A. tumida lifecycle, both externally and in the GI tract. This study explored the development of feeding and soil bioassays to test the effects of several insecticides on A. tumida larvae. Feeding and injection bioassays were also used to deliver a fungicide with the goal of repressing K. ohmeri, which was expected to detrimentally impact A. tumida health. The results of this work enhance our current knowledge or A. tumida biology and provide a useful basis for development of safe and selective management A. tumida management options for the future. / Doctor of Philosophy / The small hive beetle is an invasive European honey bee pest that poses a significant threat to apiaries in the United States. These beetles feed on hive products and brood, pollute the hive with fermenting waste, and, in severe infestations, cause colonies to abandon their hives. This project investigated previously unexplored control options that take small hive beetle biology into account. Small hive beetles have an exceptional sense of smell compared to other beetles, and this ability helps them to locate honey bee hives. Therefore, behavioral responses to attractants and repellants were tested through olfactometry, in which beetles were given a choice to travel toward or away from specific odors or odor blends. Responses to these odors on a physiological level were also quantified through electrical recordings of beetle antennae. Small hive beetles are also known to have a yeast-like symbiont, which is present throughout the small hive beetle lifecycle, both externally and internally. Feeding bioassasy for small hive beetle larvae, along with soil bioassays for the delivery of insecticides were also developed and used to test several compounds against small hive beetle larvae. Feeding bioassays were also used to deliver a fungicide to larval and adult beetles with the goal of repressing internal fungal activity The results of these studies help expand the knowledge of small hive beetle olfaction and provide a background for the development of novel control options to effectively manage this destructive pest.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/109672
Date14 April 2022
CreatorsRoth, Morgan Alicia
ContributorsEntomology, Gross, Aaron Donald, Yang, Chin-Cheng Scotty, Lahondère, Chloé, Couvillon, Margaret J., Wilson, James McKee
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.1072 seconds