Return to search

Battery Cell Monitoring Unit

The proposed cell monitoring unit for sensing voltage, current, and temperature in a 12-cell 18650 lithium-ion battery module aims to be low-power, serving as the core of an energy-efficient battery management system and facilitating battery management functions with cell data. Notable features include a switchable voltage divider, a single op-amp differential amplifier and level shifter, and a high-precision composite amplifier. The proposed circuit is implemented on a printed circuit board. Measurement results show that the highest power dissipation under continuous operation is from the current sensing circuit at 6.03 mW under a 4 A string current, followed by the voltage sensing at 2.52 mW for the top cell and the temperature sensing at 34.9 μW. The measured power figures include the power dissipation from the battery cells in addition to the cell monitoring unit. The maximum output error is 68 mV for cell voltages up to 44.4 V, 36 mA for current up to 4 A, and 0.37 ◦C for temperature up to 73 ◦C. / M.S. / Battery management systems are required in modern rechargeable battery-operated devices to help ensure that the batteries operate within the manufacturer-specified operating range. Otherwise, damage to the batteries or to the device may occur. Battery modules are comprised of smaller energy cells to achieve the specified energy capacity and power output. At the core of a battery management system is a battery cell monitoring unit that interfaces the management system with the battery module by providing data about each of the battery cells, including voltage, current, and temperature. To help minimize the power dissipation of battery-powered devices and prolong the battery life, the power consumed by the battery management system should be small. This project aims to detail the design and results of a low-power cell monitoring unit as the core component of energy-efficient battery management systems. The proposed circuit is designed for a 12-cell lithium-ion battery module and implemented on a printed circuit board. The maximum measured power dissipation under continuous operation is 6.03 mW for the current sensing circuit, followed by the voltage sensing circuit at 2.52 mW and the temperature sensing circuit at 34.9 μW.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115066
Date12 April 2023
CreatorsDanson, Eric C.
ContributorsElectrical and Computer Engineering, Ha, Dong S., Walling, Jeffrey S., Sable, Dan M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Languageen_US
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/pdf

Page generated in 0.0026 seconds