Return to search

Effects of Irreversible Electroporation and High-Frequency Irreversible Electroporation for the Treatment of Breast Cancer

Breast cancer (BC) is the second most common cause of cancer-related deaths for women in the United States, estimated to affect 1 in 8 women. Difficulties arise in BC treatment due to the hormone sensitivity and heterogeneity of the malignancies, and the poor prognosis after metastases. Due to the immense physical and psychological effects of conventional surgical methods, minimally invasive, non-thermal, focal electroporation-based ablation therapies are being investigated for the treatment of BC. Irreversible Electroporation (IRE) delivers a series of long, monopolar electrical pulses via electrodes inserted directly into the targeted tissue which disrupt cellular membranes by creating nano-scale pores, killing the cells via loss of homeostasis while promoting an immune response. However, IRE requires cardiac synchronization and a full-body paralytic to mitigate unwanted muscle contractions, which motivated the creation of second generation High-Frequency IRE or H-FIRE. H-FIRE delivers short, bipolar pulses to destroy cancer cells without muscle contractions and nerve excitation, and allows for more tunable treatment parameters. Throughout my thesis, I discuss investigations of H-FIRE for the treatment of triple-negative and hormone-sensitive BC cell lines and compare efficacy to IRE outcomes. To further establish the translation and understanding of H-FIRE for BC applications, my master's thesis focuses on: (1) determining the lethal electric field threshold of both cell lines in a 3D hydrogel matrix after H-FIRE and IRE; and (2) employ those values in a single bipolar probe numerical model to simulate in vivo treatments. The culmination of this thesis advances the use of H-FIRE in breast tissues, as well as demonstrates how in vitro data can be used to develop clinically relevant numerical models to better predict in vivo treatment outcome. / Master of Science / Breast cancer (BC) is one of the most deadly forms of cancer for women in the United States, affecting every 1 in 8 women. Difficulties arising in the treatment of BC include the hormone sensitivity of malignancies, metastatic tendencies, and the diversity of the tissue that characterizes the breast. Surgical options like mastectomy or lumpectomy are most often used when treating BC; however, these are incredibly taxing on the patient. This reason has sparked investigations of focused ablation modalities for the treatment of BC, specifically non-thermal mechanisms like electroporation-based therapies. Electroporation explains the phenomenon that cells subjected to a high enough electric field will result in increased membrane permeability, allowing for the entrance of therapeutic agents in reversible mechanisms, or cell death beyond an irreversible point. Irreversible Electroporation (IRE) has shown success for the treatment of prostate, liver, kidney, and pancreas. However, due to some drawbacks, second generation High-Frequency IRE (H-FIRE) is increasingly being investigated for certain cancer types and is the main focus of this thesis project. Within this thesis, I discuss investigations of H-FIRE with applications to treat malignant breast cell lines. Specifically, my thesis focuses on: (1) determining the point at which cancer cells damage is irreversible; and (2) incorporate those values into a numerical model used to simulate electroporation treatment if a tumor were embedded in a layer of fatty connective breast tissue. The culmination of this thesis enhances our understanding of H-FIRE in the breast, with the hopes of future transition of application into animal studies and ultimately the clinic.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115516
Date26 June 2023
CreatorsSaunier, Sofie Milou
ContributorsDepartment of Biomedical Engineering and Mechanics, Davalos, Rafael V., Verbridge, Scott, Allen, Irving Coy
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0026 seconds