Return to search

Mission Planning and Instrument Design for Stellar Occultation Measurements of Lower Thermospheric Nitric Oxide in the Polar Night

An ultraviolet instrument compatible with a CubeSat form factor is currently being developed at Virginia Tech for the purpose of measuring nitric oxide in the polar night through the stellar occultation technique. This instrument will allow the investigation of how the Sun and Earth systems are related via energetic particle precipitation in the auroral regions. The work performed in this thesis supports the instrument design and requirements development by modelling the stellar occultation geometry to identify orbit parameters and target stars that could yield nitric oxide measurements during the polar winter at consistent latitudes, to best observe the build-up and fall-off of nitric oxide. The orbit study was accomplished through the development of an open-source tool in MATLAB, the Stellar Occultation Mission Planner. The results of this analysis were used to model the instrument performance and identify the required narrowband filter parameters to meet science requirements. Additional studies were performed to explore system performance for a future flight opportunity. / Master of Science / A small, light weight instrument is being designed at Virginia Tech to allow for nitric oxide in the atmosphere to be measured during the long polar nights that occur during winter in the Arctic and Antarctic regions. This instrument will allow scientists to explore how the Sun and Earth interact through space weather at high latitudes. This will be accomplished by using star light to probe the atmosphere while the instrument is onboard a small spacecraft called a CubeSat. The work performed in this thesis simulated the spacecraft orbit to determine which stars yielded the best measurements over the course of the polar night. Using these results, the instrument performance was simulated to inform the design of a filter for the instrument. Additional studies were performed to support the design of a future mission to fly the instrument in space.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115655
Date05 July 2023
CreatorsJones, Nicholas Alexander
ContributorsAerospace and Ocean Engineering, Black, Jonathan T., Bailey, Scott M., Harding, Leon K.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsCreative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0015 seconds