Return to search

Effects of Occupational Exoskeletons on Responses to Simulated Slips and Trips

Occupational exoskeletons are designed to reduce workplace injury risk by decreasing work demands. Due to their relatively recent development, there has been limited research into potential unintended and undesirable consequences of wearing them. The goal of this thesis was to investigate the effects of exoskeleton use on reactive balance in response to simulated slips and trips. Five representative exoskeletons were investigated including leg-, back, and shoulder-support exoskeletons. This thesis consists of two studies: a smaller study investigating one exoskeleton and a larger one investigating multiple exoskeletons. Participants stood on a specialized treadmill, then abruptly and unexpectedly changing treadmill belt speed to simulate trip-like forward losses of balance or slip-like backward losses of balance. The results of the first study showed that a passive leg-support exoskeleton adversely reactive balance for both slips and trips. The results of the second study showed that back-support exoskeletons had a greater adverse effect on reactive balance compared to shoulder-support exoskeletons for both slips and trips. These exoskeletons affected reactive balance due to their interaction with stepping kinematics and movement constraints. This thesis provides important information that can be used to warn users of potential increased fall risks and inform exoskeleton manufacturers who may be able to modify designs to reduce any additional fall risk. / Master of Science / Occupational exoskeletons reduce muscle workload for workers during manual tasks. However, because of their additional weight and how they restrict movement, they can increase the risk of falling after a slip or a trip. The goal of this thesis was to see how exoskeletons affect balance after simulated slips and trips. Five exoskeletons were studied; These exoskeletons supported the legs, back, and shoulders. This thesis includes two studies: a smaller study with one exoskeleton and a larger one with multiple exoskeletons. In order to simulate a slip and trip, participants stood on a treadmill and then the treads would unexpectedly accelerate to a speed to make them lose their balance. The results of the first study showed that an exoskeleton that supported the legs negatively affected balance for both slips and trips. The results of the second study showed that exoskeletons that supported the back negatively affected balance more than those that supported the shoulders for both slips and trips. These exoskeletons affected balance due to them interacting with the legs and affected stepping. This thesis provides important information that can be used to warn workers of potential increased fall risks and inform exoskeleton manufacturers who may be able to help reduce any fall risk.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115861
Date26 July 2023
CreatorsDooley, Stephen Joseph
ContributorsIndustrial and Systems Engineering, Madigan, Michael L., Kim, Sun Wook, Nussbaum, Maury A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/vnd.openxmlformats-officedocument.wordprocessingml.document
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds