Return to search

A Comparative Study of Machine Learning Models for Multivariate NextG Network Traffic Prediction with SLA-based Loss Function

As Next Generation (NextG) networks become more complex, the need to develop a robust, reliable network traffic prediction framework for intelligent network management increases.
This study compares the performance of machine learning models in network traffic prediction using a custom Service-Level Agreement (SLA) - based loss function to ensure SLA violation constraints while minimizing overprovisioning. The proposed SLA-based parametric custom loss functions are used to maintain the SLA violation rate percentages the network operators require. Our approach is multivariate, spatiotemporal, and SLA-driven, incorporating 20 Radio Access Network (RAN) features, custom peak traffic time features, and custom mobility-based clustering to leverage spatiotemporal relationships. In this study, five machine learning models are considered: one recurrent neural network (LSTM) model, two encoder-decoder architectures (Transformer and Autoformer), and two gradient-boosted tree models (XGBoost and LightGBM). The prediction performance of the models is evaluated based on different metrics such as SLA violation rate constraints, overprovisioning, and the custom SLA-based loss function parameter. According to our evaluations, Transformer models with custom peak time features achieve the minimum overprovisioning volume at 3% SLA violation constraint. Gradient-boosted tree models have lower overprovisioning volumes at higher SLA violation rates. / Master of Science / As the Next Generation (NextG) networks become more complex, the need to develop a robust, reliable network traffic prediction framework for intelligent network management increases. This study compares the performance of machine learning models in network traffic prediction using a custom loss function to ensure SLA violation constraints. The proposed SLA-based custom loss functions are used to maintain the SLA violation rate percentages required by the network operators while minimizing overprovisioning. Our approach is multivariate, spatiotemporal, and SLA-driven, incorporating 20 Radio Access Network (RAN) features, custom peak traffic time features, and mobility-based clustering to leverage spatiotemporal relationships. We use five machine learning and deep learning models for our comparative study: one recurrent neural network (RNN) model, two encoder-decoder architectures, and two gradient-boosted tree models. The prediction performance of the models was evaluated based on different metrics such as SLA violation rate constraints, overprovisioning, and the custom SLA-based loss function parameter.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/116521
Date20 October 2023
CreatorsBaykal, Asude
ContributorsElectrical and Computer Engineering, Soysal, Alkan, Xuan, Jianhua, Smith, Leonard Allen
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0074 seconds