Return to search

Data-Driven, Non-Parametric Model Reference Adaptive Control Methods for Autonomous Underwater Vehicles

This thesis details the implementation of two adaptive controllers on autonomous underwater vehicle(AUV) attitude dynamics starting from the standard six degree-of-freedom dynamic model. I apply two model reference adaptive control (MRAC) algorithms which make use of kernel functions for learning functional uncertainty present in the system dynamics. The first method extends recent results on model reference adaptive control using reproducing kernel Hilbert space (RKHS) learning techniques for some general cases of multi-input systems. The first controller design is a model reference adaptive controller (MRAC) based on a vector- valued RKHS that is induced by operator-valued kernels. This paper formulates a model reference adaptive control strategy based on a dead zone robust modification, and derives conditions for the ultimate boundedness of the tracking error in this case. The second controller is an implementation of the Gaussian Process MRAC developed by Chowdhary, et al. I discuss the method of each of these algorithms before contrasting the underlying theoretical structure of each algorithm. Finally, I provide a comparison of each algorithm's performance on the six degree-of-freedom dynamic model of the Virginia Tech 690 AUV and provide field trial results for the RKHS based MRAC implementation. / Master of Science / This thesis details the implementation of two algorithms which control the attitude of an autonomous underwater vehicle. Rather than developing detailed dynamic models of the vehicles as is performed in classical control methods, each of these implementations only makes assumptions that the unknown portions of the dynamic models can be represented by a broad class of functions defined by a mathematical structure called a reproducing kernel Hilbert Space. Each algorithm implements learning techniques using the theory of reproducing kernel Hilbert spaces to bound the error between the vehicle attitude and the commanded vehicle attitude. One algorithm, called RKHS MRAC, implements an adaptive update law based on the attitude error to improve the controller performance. The second algorithm, called GP MRAC, uses estimated vehicle rotational accelerations and statistical learning methods to approximate the unknown function. Each of these methods is compared in theory and in a vehicle simulation. The RKHS MRAC is additionally demonstrated in field trial results.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/116633
Date03 November 2023
CreatorsOesterheld, Derek I.
ContributorsElectrical Engineering, Stilwell, Daniel J., Brizzolara, Stefano, Kurdila, Andrew J.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0027 seconds