Return to search

Combinatorial Properties of the Hilbert Series of Macdonald Polynomials

The original Macdonald polynomials P<sub>μ</sub> form a basis for the vector space of symmetric functions which specializes to several of the common bases such as the monomial, Schur, and elementary bases. There are a number of different types of Macdonald polynomials obtained from the original P<sub>μ</sub> through a combination of algebraic and plethystic transformations one of which is the modified Macdonald polynomial H̃<sub>μ</sub>. In this dissertation, we study a certain specialization F̃<sub>μ</sub>(q,t) which is the coefficient of x₁x₂…x<sub>N</sub> in H̃<sub>μ</sub> and also the Hilbert series of the Garsia-Haiman module M<sub>μ</sub>. Haglund found a combinatorial formula expressing F̃<sub>μ</sub> as a sum of n! objects weighted by two statistics. Using this formula we prove a q,t-analogue of the hook-length formula for hook shapes. We establish several new combinatorial operations on the fillings which generate F̃<sub>μ</sub>. These operations are used to prove a series of recursions and divisibility properties for F̃<sub>μ</sub>. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/26702
Date27 April 2010
CreatorsNiese, Elizabeth M.
ContributorsMathematics, Loehr, Nicholas A., Haskell, Peter E., Green, Edward L., Brown, Ezra A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationNiese_EM_D_2010.pdf

Page generated in 0.0028 seconds