Return to search

Investigation of the Effects of Various Energy and Exergy-Based Objectives/Figures of Merit on the Optimal Design of High Performance Aircraft System

This thesis work shows the advantages of applying exergy-based analysis and optimization methods to the synthesis/design and operation an Advanced Aircraft Fighter (AAF) with three subsystems: a Propulsion Subsystem (PS), an Environmental Control Subsystem (ECS), and an Airframe Subsys-tem - Aerodyanmics (AFS-A) is used to illustrate these advantages. Thermodynamic (both energy and exergy), aerodynamic, geometric, and physical models of the components comprising the subsystems are developed and their interactions defined. An exergy-based parametric study of the PS and its components is first performed in order to show the type of detailed information on internal system losses. This is followed by a series of constrained, system synthesis/design optimizations based on five different objective functions, which define energy-based and exergy-based measures of performance.

A first set of optimizations involving four of the objectives (two energy-based and two exergy-based) are performed with only PS and ECS degrees of freedom. Losses for the AFS-A are not incorporated into the two exergy-based objectives. The results show that as expected all four objectives globally produce the same optimum vehicle.A second set of optimizations is then performed with AFS-A degrees of freedom and again with two energy- and exergy-based objectives. However, this time one of the exergy-based objectives incorporates AFS-A losses directly into the objective. The results are that this latter objective produces a significantly better optimum vehicle. Thus, an exergy-based approach is not only able to pinpoint where the greatest inefficiencies in the system occur but produces a superior optimum vehicle as well by accounting for irreversibility losses in subsystems (e.g., the AFS-A) only indirectly tied to fuel usage. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31405
Date17 May 2005
CreatorsPeriannan, Vijayanand
ContributorsMechanical Engineering, von Spakovsky, Michael R., Moorhouse, David, Nelson, Douglas J., Ellis, Michael W.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationVijay_Thesis.pdf

Page generated in 0.0024 seconds