Return to search

Analytical Methods Development for High-Throughput Photochemisty With Led Arrays

This thesis describes the design, construction, and evaluation of a series of LED array photolysis systems for high throughput photochemistry. Three generations of array systems of increasing sophistication are evaluated using calorimetric measurements and potassium tris(oxalato)ferrate(III) chemical actinometry. The results are analyzed using descriptive statistics and analysis of variance (ANOVA). The LEDs in the third generation array were shown to be statistically equivalent, with respect to light output, according to physical and chemical actinometry experiments. The third generation LED array was compared with a traditional 1000 W Xe arc lamp source in terms of cost, light intensity, and light stability. Two constant current drivers were evaluated with respect to LED array performance. The optimized third generation LED array was evaluated as the photolysis source for photochemical hydrogen production experiments using the supramolecular catalyst [{(bpy)2Ru(dpp)}2RhCl2](PF6)5. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/32709
Date15 June 2009
CreatorsBrown, Jared R.
ContributorsChemistry, Brewer, Karen J., Tanko, James M., Deck, Paul A., Anderson, Mark R., Yee, Gordon T.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf, application/pdf, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
Relation02acspermission.PDF, 01Brown_Thesis_EDT.pdf, 04taylorfrancispermission.PDF, 03elsevierpermission.PDF

Page generated in 0.002 seconds