Return to search

Resolutions mod I, Golod pairs

Let <i>R</i> be a commutative ring, <i>I</i> be an ideal in <i>R</i> and let <i>M</i> be a <i>R/ I</i> -module. In this thesis we construct a <i>R/ I</i> -projective resolution of <i>M</i> using given <i>R</i>-projective resolutions of <i>M</i> and <i>I</i>. As immediate consequences of our construction we give descriptions of the canonical maps Ext<sub>R/I</sub><i>(M,N)</i> -> Ext<sub>R</sub><i>(M,N)</i> and Tor<sup>R</sup><sub>N</sub><i>(M, N)</i> -> Tor<sup>R/I</sup><sub>n</sub><i>(M, N)</i> for a <i>R/I</i> module <i>N</i> and we give a new proof of a theorem of Gulliksen [6] which states that if <i>I</i> is generated by a regular sequence of length r then ∐∞<sub>n=o</sub> Tor<sup>R/I</sup><sub>n</sub> <i>(M, N)</i> is a graded module over the polynomial ring </i>R/ I</i> [X₁. .. X<sub>r</sub>] with deg X<sub>i</sub> = -2, 1 ≤ i ≤ r. If <i>I</i> is generated by a regular element and if the <i>R</i>-projective dimension of <i>M</i> is finite, we show that <i>M</i> has a <i>R/ I</i>-projective resolution which is eventually periodic of period two.

This generalizes a result of Eisenbud [3]. In the case when <i>R</i> = (<i>R</i>, m) is a Noetherian local ring and <i>M</i> is a finitely generated <i>R/ I</i> -module, we discuss the minimality of the constructed resolution. If it is minimal we call (<i>M, I</i>) a Golod pair over <i>R</i>. We give a direct proof of a theorem of Levin [10] which states thdt if (<i>M,I</i>) is a Golod pair over <i>R</i> then (Ω<sup>n</sup><sub>R/I</sub>R/I(M),I) is a Golod pair over <i>R</i> where Ω<sup>n</sup><sub>R/I</sub>R/I(M) is the nth syzygy of the constructed <i>R/ I</i> -projective resolution of <i>M</i>. We show that the converse of the last theorem is not true and if (Ω¹<sub>R/I</sub>R/I(M),I) is a Golod pair over <i>R</i> then we give a necessary and sufficient condition for (<i>M, I</i>) to be a Golod pair over <i>R</i>.

Finally we prove that if (<i>M, I</i>) is a Golod pair over <i>R</i> and if a ∈ <i>I</i> - m<i>I</i> is a regular element in </i>R</i> then (<i>M</i>, (a)) and (1/(a), (a)) are Golod pairs over <i>R</i> and (<i>M,I</i>/(a)) is a Golod pair over <i>R</i>/(a). As a corrolary of this result we show that if the natural map π : <i>R</i> → <i>R/1</i> is a Golod homomorphism ( this means (<i>R</i>/m, <i>I</i>) is a Golod pair over <i>R</i> ,Levin [8]), then the natural maps π₁ : <i>R</i> → <i>R</i>/(a) and π₂ : <i>R</i>/(a) → <i>R/1</i> are Golod homomorphisms. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/39431
Date20 September 2005
CreatorsGokhale, Dhananjay R.
ContributorsMathematics, Green, Edward L., Farkas, Daniel R., Thomson, James E., McCoy, Robert A., Arnold, Jimmy T.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatv, 47 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 26121360, LD5655.V856_1992.G643.pdf

Page generated in 0.0028 seconds