Return to search

Availability and Surface Runoff of Phosphorus from Compost Amended Mid-Atlantic Soils

The accumulation of P in soil from land-applied biosolids and manure increases the risk for P enrichment of agricultural runoff. Transport of these residuals to areas where P may be efficiently utilized is necessary to reduce the threat to water quality. Composting can improve biosolids and manure handling characteristics to make their transportation more feasible; however, little is known about P dynamics in compost-amended soil. We investigated the factors controlling P solubility and plant availability in two soils, a Kempsville fine sandy loam (Typic Hapludult) and a Fauquier silty clay loam (Ultic Hapludalf), amended with one of 4 composts (2 biosolids composts and 2 poultry litter - yard waste composts), poultry litter, or inorganic P (as KH2PO4) in incubation and greenhouse pot studies. We also compared the effects of compost, poultry litter and commercial fertilizer on surface P runoff from a Fauquier silty clay loam that had received compost, poultry litter, or commercial fertilizer for 5 years. Organic amendments with higher concentrations of Fe, Al, and Ca had lower relative P solubility/availability. Phosphorus solubility in the Kempsville fine sandy loam, having far lower native P binding capacity, was more affected by Fe, Al, and Ca applied with the organic amendments. The concentration of P in runoff from the compost treatments was higher; however, infiltration was increased and runoff decreased so the mass loss of P and sediment was lower. Improved soil physical properties associated with compost applications aid to limit P runoff. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/40532
Date07 January 2005
CreatorsSpargo, John Thomas
ContributorsCrop and Soil Environmental Sciences, Evanylo, Gregory K., Mullins, Gregory L., Alley, Marcus M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationETD_Final.pdf

Page generated in 0.0025 seconds