Return to search

On the Improvement of Positioning in LTE with Collaboration and Pressure Sensors

The ability to find the location of a mobile user has become of utmost importance. The demands of first responders necessitates the ability to accurately identify the location of an individual who is calling for help. Their response times are directly influenced by the ability to locate the caller. Thus, applications such as Enhanced 911 and other location-based services warrant the ability to quickly and accurately calculate location. The FCC has also put in place a timeline for indoor location accuracy requirements that must be met by the mobile communications service providers. In order to meet these requirements, there are many means of performing indoor geolocation that require research; in this thesis two specific methods of identifying the location of a user will be investigated.

In the first part, the indoor localization of a target, whose exact location is unknown, in a LTE network is studied. In this problem the time difference of arrival of the LTE uplink signals sent from the target to an observer are used as the means to estimate the target position. The two-dimensional location of a user is then estimated through the use of a nonlinear least-squares algorithm. To improve this approach, a cooperative localization technique in uplink LTE is proposed in which the User Equipment (UE) communicates with base stations as well as other handsets. Through simulated results it is shown that utilizing collaboration can improve location estimation and outperform non-collaborative localization.

In the second part, the indoor localization of a target, focusing on its third dimension or elevation, is studied through the use of barometric pressure sensors in mobile handsets. Finding the third dimension of location, or the correct height above the ground level which equates to the floor in a building that a UE is on, cannot be performed with two-dimensional measurement models. For this problem, the pressure sensors are used to accurately find an immediate pressure measurement and allow for the altitude of a handset to be calculated. This altitude can be translated into an estimation for a specific floor of a building given the use of a ground floor pressure reference. Through simulation results it is then shown that the accuracy of third dimension or indoor-floor localization can be improved with the use of collaborative pressure sensors of other mobile handsets. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/54019
Date06 July 2015
CreatorsMcDermott, Kevin Patrick
ContributorsElectrical and Computer Engineering, Buehrer, R. Michael, Dietrich, Carl B., Marojevic, Vuk
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds