Return to search

Experimental Investigation of Fan Rotor Response to Inlet Swirl Distortion

Next generation aircraft design focuses on highly integrated airframe/engine architectures that exploit advantages in system level efficiency and performance. One such design concept incorporates boundary layer ingestion which locates the turbofan engine inlet near enough to the lifting surface of the aircraft skin that the boundary layer is ingested and reenergized. This process reduces overall aircraft drag and associated required thrust, resulting in fuel savings and decreased emissions; however, boundary layer ingestion also creates unique challenges for the turbofan engines operating in less than optimal inlet flow conditions.

The engine inlet flow profiles predicted from boundary layer ingesting aircraft architectures contain complex distortions that affect the engine operability, durability, efficiency, and performance. One component of these complex distortion profiles is off-axial secondary flow, commonly referred to as swirl. As a means to investigate the interactions of swirl distortion with turbofan engines, an experiment was designed to measure distorted flow profiles in an operating turbofan research engine.

Three-dimensional flow properties were measured at discrete planes immediately upstream and immediately downstream of the fan rotor, isolating the component for analysis. Constant speed tests were conducted under clean and distorted test conditions. For clean tests, a straight cylindrical inlet duct was attached to the fan case; for distorted tests, a StreamVane swirl distortion generator was inserted into the inlet duct. The StreamVane was designed to induce a swirl distortion matching results of computation fluid dynamics models of a conceptual blended wing body aircraft at a plane upstream of the fan. The swirl distortion was then free to develop naturally within the inlet duct before being ingested by the engine.

Results from the investigation revealed that the generated swirl profile developed, mixed, and dissipated in the inlet duct upstream of the fan. Measurements immediately upstream of the fan rotor leading edge revealed 50% reduction in measured flow angle magnitudes along with evidence of fanwise vortex convection when compared to the StreamVane design profile. The upstream measurements also indicated large amounts of secondary flow entered the fan rotor. Measurements immediately downstream of the fan rotor trailing edge demonstrated that the fan processed the distortion and further reduced the intensity of the swirl; however, non-uniform secondary flow persisted at this plane. The downstream measurements confirmed that off-design conditions entered the fan exit guide vanes, likely contributing to cascading performance deficiencies in downstream components and reducing the performance of the propulsor system. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/71323
Date07 June 2016
CreatorsFrohnapfel, Dustin Joseph
ContributorsMechanical Engineering, O'Brien, Walter F. Jr., Lowe, K. Todd, Wicks, Alfred L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds