Return to search

Large display interaction via multiple acceleration curves on a touchpad

Large, high resolution displays combine high pixel density with ample physical dimensions. Combination of these two factors creates a multi-scale workspace where object targeting requires both high speed and high accuracy for nearby and far apart targeting. Modern operating systems support dynamic control-display gain adjustment (i.e. cursor acceleration) that helps to maintain both speed and accuracy. However, very large high resolution displays require broad range of control-display gain ratios. Current interaction techniques attempt to solve the problem by utilizing multiple modes of interaction, where different modes provide different levels of pointer precision. We are investigating the question of the value of allowing users to dynamically choose granularity levels for continuous pointing within single mode of interaction via multiple acceleration curves. Our solution offers different cursor acceleration curves depending on the targeting conditions, thus broadening the range of control-display ratios. Our approach utilizes a consumer multitouch touchpad that allows fast and accurate detection of multiple fingers. A user can choose three different acceleration curves based on how many fingers are used for cursor positioning. Our goal is to investigate the effects of such multi-scale interaction and to compare it against standard single curve interaction. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/76941
Date23 January 2014
CreatorsEsakia, Andrey
ContributorsComputer Science, North, Christopher L., Gracanin, Denis, Tilevich, Eli
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Languageen_US
Detected LanguageEnglish
TypeThesis, Text
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0028 seconds