Return to search

Investigation of Non-Traditional Applications of the Physical Level in Reconfigurable Computing

Multiple research projects are proposed that utilize low-level knowledge of Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) design processes to enable additional research avenues. In order to accomplish these projects, Tools for Open Reconfigurable Computing (TORC) is utilized to provide a robust environment for circuit analysis and modifications. These projects rely on looking at the low-level constructs of the internals of these microchips. Through this knowledge, techniques for performing supply chain evaluations are proposed utilizing a non-binary comparison of multiple characteristic vectors between different FPGA manufacturing lots, and FPGAs that have been exposed to different environmental conditions. Second, techniques are proposed that look at design recovery by performing fuzzy segmentation and fuzzy matching algorithms to a problem area that has traditionally focused on exact graph sub-isomorphism solutions. Through these projects, additional research vectors are opened to protect and analyze the engineering efforts that are exerted in the design of FPGA and ASIC projects. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/78257
Date29 April 2016
CreatorsCouch, Jacob D.
ContributorsElectrical and ComputerEngineering, Athanas, Peter M., Steiner, Neil Joseph, Clancy, Thomas Charles III, Black, Jonathan T., McGwier, Robert W.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0023 seconds