Return to search

A Large Collection Learning Optimizer Framework

Content is generated on the web at an increasing rate. The type of content varies from text on a traditional webpage to text on social media portals (e.g., social network sites and microblogs). One such example of social media is the microblogging site Twitter. Twitter is known for its high level of activity during live events, natural disasters, and events of global importance. Challenges with the data in the Twitter universe include the limit of 140 characters on the text length. Because of this limitation, the vocabulary in the Twitter universe includes short abbreviations of sentences, emojis, hashtags, and other non-standard usage. Consequently, traditional text classification techniques are not very effective on tweets. Fortunately, sophisticated text processing techniques like cleaning, lemmatizing, and removal of stop words and special characters will give us clean text which can be further processed to derive richer word semantic and syntactic relationships using state of the art feature selection techniques like Word2Vec. Machine learning techniques, using word features that capture semantic and context relationships, can be of benefit regarding classification accuracy.

Improving text classification results on Twitter data would pave the way to categorize tweets relative to human defined real world events. This would allow diverse stakeholder communities to interactively collect, organize, browse, visualize, analyze, summarize, and explore content and sources related to crises, disasters, human rights, inequality, population growth, resiliency, shootings, sustainability, violence, etc. Having the events classified into different categories would help us study causality and correlations among real world events.

To check the efficacy of our classifier, we would compare our experimental results with an Association Rules (AR) classifier. This classifier composes its rules around the most discriminating words in the training data. The hierarchy of rules, along with an ability to tune to a support threshold, makes it an effective classifier for scenarios where short text is involved.

Traditionally, developing classification systems for these purposes requires a great degree of human intervention. Constantly monitoring new events, and curating training and validation sets, is tedious and time intensive. Significant human capital is required for such annotation endeavors. Also, involved efforts are required to tune the classifier for best performance. Developing and tuning classifiers manually using human intervention would not be a viable option if we are to monitor events and trends in real-time. We want to build a framework that would require very little human intervention to build and choose the best among the available performing classification techniques in our system.

Another challenge with classification systems is related to their performance with unseen data. For the classification of tweets, we are continually faced with a situation where a given event contains a certain keyword that is closely related to it. If a classifier, built for a particular event, due to overfitting to what is a biased sample with limited generality, is faced with new tweets with different keywords, accuracy may be reduced. We propose building a system that will use very little training data in the initial iteration and will be augmented with automatically labelled training data from a collection that stores all the incoming tweets. A system that is trained on incoming tweets that are labelled using sophisticated techniques based on rich word vector representation would perform better than a system that is trained on only the initial set of tweets.

We also propose to use sophisticated deep learning techniques like Convolutional Neural Networks (CNN) that can capture the combination of the words using an n-gram feature representation. Such sophisticated feature representation could account for the instances when the words occur together.

We divide our case studies into two phases: preliminary and final case studies. The preliminary case studies focus on selecting the best feature representation and classification methodology out of the AR and the Word2Vec based Logistic Regression classification techniques. The final case studies focus on developing the augmented semi-supervised training methodology and the framework to develop a large collection learning optimizer to generate a highly performant classifier.

For our preliminary case studies, we are able to achieve an F1 score of 0.96 that is based on Word2Vec and Logistic Regression. The AR classifier achieved an F1 score of 0.90 on the same data.

For our final case studies, we are able to show improvements of F1 score from 0.58 to 0.94 in certain cases based on our augmented training methodology. Overall, we see improvement in using the augmented training methodology on all datasets. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/78302
Date30 June 2017
CreatorsChakravarty, Saurabh
ContributorsComputer Science, Fox, Edward A., Huang, Bert, Fan, Weiguo
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds