Return to search

Online Message Delay Prediction for Model Predictive Control over Controller Area Network

Today's Cyber-Physical Systems (CPS) are typically distributed over several computing nodes communicating by way of shared buses such as Controller Area Network (CAN). Their control performance gets degraded due to variable delays (jitters) incurred by messages on the shared CAN bus due to contention and network overhead. This work presents a novel online delay prediction approach that predicts the message delay at runtime based on real-time traffic information on CAN. It leverages the proposed method to improve control quality, by compensating for the message delay using the Model Predictive Control (MPC) algorithm in designing the controller. By simulating an automotive Cruise Control system and a DC Motor plant in a CAN environment, it goes on to demonstrate that the delay prediction is accurate, and that the MPC design which takes the message delay into consideration, performs considerably better. It also implements the proposed method on an 8-bit 16MHz ATmega328P microcontroller and measures the execution time overhead. The results clearly indicate that the method is computationally feasible for online usage. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/78626
Date28 July 2017
CreatorsBangalore Narendranath Rao, Amith Kaushal
ContributorsElectrical and Computer Engineering, Zeng, Haibo, Guo, Feng, Tokekar, Pratap
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/x-zip-compressed
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0029 seconds