Return to search

Density Modulated Semi-Packed Micro Gas Chromatography Columns

With the continued evolution of MEMS-based gas chromatography, the drive to develop new standalone systems with lower power consumptions and higher portability has increased. However, with improvements come tradeoffs, and trying to reduce the pressure drop requirements of previously reported semi-packed columns causes a significant sacrifice in separation efficiency. This thesis covers the techniques for evaluating the separation column in a gas chromatography system as well as the important parameters that have the most effect on a column’s efficiency. Ionic liquids are introduced as a stable and versatile stationary phase for micro separation columns. It then describes a MEMS-based separation column design utilizing density modulation of embedded micro-pillars which attempts to optimize the balance between separation efficiency and pressure drop. / Master of Science / Gas chromatography is a technique used by scientists to separate and identify chemical compounds present in a given test mixture. It is a versatile technique that can be used for qualitative and quantitative analysis of complex mixtures in a variety of applications. However, typical gas chromatography systems are confined to a lab because they are large and consume a lot of power. In order to overcome these problems, different research groups have focused their attention towards the development of portable MEMS-based gas chromatography systems. By miniaturizing the various components of a gas chromatography system, these two main issues can be alleviated. This thesis covers the strategies used to develop and evaluate the separation column of a gas chromatography system and introduce a new MEMS-based column design that will further reduce the power consumption.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/83448
Date03 May 2018
CreatorsChan, Ryan
ContributorsElectrical and Computer Engineering, Agah, Masoud, Jia, Xiaoting, Hudait, Mantu K.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Languageen_US
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 United States, http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Page generated in 0.0019 seconds