Floating treatment wetlands (FTWs) are an innovative best management practice that can enhance the performance of traditional retention ponds by increasing removal of the nutrients nitrogen (N) and phosphorous (P). FTWs consist of floating rafts on which wetland plants are planted, allowing the roots to be submerged below the water surface while the shoots remain above. A growing body of research has documented FTW performance with regard to urban runoff treatment, however evaluation of FTW effectiveness for treatment of agricultural runoff has received less attention. Due to high fertilization and irrigation rates, commercial nursery runoff contains much higher concentrations of N and P than runoff from urban areas. We conducted this study over two growing seasons (2015 and 2016) to assess the effectiveness of FTWs for use in commercial nursery retention ponds. In the first study we used two different nutrient concentrations, one to simulate nursery runoff (17.1 mg∙L-1 TN and 2.61 mg∙L-1 TP) and one to simulate concentrations that fall between urban and nursery runoff (5.22 mg∙L-1 TN and 0.52 mg∙L-1 TP). Four treatments were used: 1) Pontederia cordata planted in cups supported by a Beemat, 2) Juncus effusus planted in cups supported by a Beemat, 3) a Beemat with no plants, and 4) no treatment (open-water). Performance was evaluated based on a 7-day hydraulic retention time (HRT). Pontederia cordata removed between 90.3% and 92.4% of total phosphorus (TP) and 84.3% and 88.9% total nitrogen (TN), depending on initial loads. These reductions were significantly more than other treatments at both high and low nutrient loading rates. Juncus effusus performed better than the control treatments for TP removal at low nutrient concentrations, but did not perform any better than the control at higher nutrient loads. In the second study, conducted in 2016, we evaluated different plant species over two 8-week trials using simulated nursery runoff. We used five monoculture FTWs with the following species: Agrostis alba, Canna ×generalis, Carex stricta, Iris ensata, and Panicum virgatum. Additionally, two treatments were created from mixed species plantings and the final treatment consisted of an open water control mesocosm. Nutrient removal performance was evaluated over a 7-day HRT. P removal (phosphate-P) by FTW treatments ranged from 26.1% to 64.7% for trial 1 and 26.8% to 63.2% for trial 2. Trial 1 N removal (sum of ammonium-N, nitrate-N, and nitrite-N) efficiencies ranged from 38.9% to 82.4%, and trial 2 ranged from 12.9% to 59.6%. Panicum virgatum removed significantly more N and P than the control and any other FTW treatment in the second study. Both studies indicated, depending upon plant species, that FTWs can effectively remove nitrogen and phosphorous from urban and commercial nursery retention ponds. / Master of Science / Floating treatment wetlands (FTWs) are used to enhance the nutrient removal performance of stormwater retention ponds. FTWs consist of a buoyant raft on which wetland plants are planted, allowing the shoots to extend above the water surface while the roots stay submerged. The purpose of this research was to evaluate FTW nutrient removal performance in a commercial nursery environment where runoff has much higher concentrations of nitrogen and phosphorous than urban stormwater. The study spanned across two growing seasons (2015 and 2016), during which, different plant species and nutrient concentrations where evaluated. The first study evaluated Pontederia cordata and Juncus effuses as well as two control treatments at a high nutrient concentration and a low nutrient concentration. The Pontederia cordata performed better than the other treatments at both the high and low initial nutrient concentrations. In the second study, the following species were evaluated using a combination of mixed and monoculture plantings: Agrostis alba, Canna ×generalis, Carex stricta, Iris ensata, and Panicum virgatum. Panicum virgatum removed significantly more nitrogen and phosphorous than any other FTW treatment in the second study. Both studies indicated that FTWs can be effective technologies for nutrient removal from urban and commercial nursery retention ponds.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/86656 |
Date | 18 July 2017 |
Creators | Spangler, Jonathan Travis |
Contributors | Biological Systems Engineering, Sample, David J., Hession, W. Cully, White, Sarah A., Fox, Laurie J. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.1372 seconds