Return to search

Electron Transport via Single Molecule Magnets with Magnetic Anisotropy

Single molecule magnets (SMMs) are molecules of mesoscopic scale which exhibit quantum properties such as quantum tunneling of magnetization, quantum interference, spin filtering effects, strong spin-phonon coupling and strong hyperfine Stark effects. These effects allow applications of SMMs to high-density information storage, molecular spintronics, and quantum information science. Therefore, SMMs are of interest to physicists, chemists, and engineers. Recently, experimental fabrication of individual SMMs within transistor set-ups have been achieved, offering a new method to examine magnetic properties of individual SMMs. In this thesis, two types of SMMs, specifically Eu2(C8H8)3 and Ni9Te6(PEt3)8, are theoretically investigated by simulating their electron transport properties within three-terminal transistor set-ups.

An extended metal atom chain (EMAC) consists of a string of metallic atoms with organic ligands surrounding the string. EMACs are an important research field for nanoelectronics. Homometallic iron-based EMACs are especially attractive due to the high spin and large magnetic anisotropy of iron(II). We explore the exchange coupling of iron atoms in two EMACs: [Fe2(mes)2(dpa)2] and [Fe4(tpda)3Cl2].

Chapter 1 provides an introduction to SMMs, electron transport experiments via SMMs and an introduction to density functional theory (DFT).

Chapter 2 presents a theoretical study of electron transport via Eu2(C8H8)3. This type of molecule is interesting since its magnetic anisotropy type changes with oxidation state. The unique magnetic properties lead to spin blockade effects at zero and low bias. In other words, the current through this molecule is completely suppressed until the bias voltage exceeds a certain value.

Chapter 3 discusses a theoretical study of electron transport via Ni9Te6(PEt3)8. The magnetic anisotropy of this magnetic cluster has cubic symmetry, which is higher than most SMMs. With appropriate magnetic anisotropy parameters, in the presence of an external magnetic field, uncommon phenomena such as low-bias blockade effects, negative conductance and discontinuous conductance lines, are observed. In Chapter 2 and 3 DFT-calculated magnetic anisotropy parameters are used and electron transport properties are calculated by solving master equations at low temperature.

Chapter 4 examines the exchange coupling between iron ions in EMACs [Fe2(mes)2(dpa)2] and [Fe4(tpda)3Cl2]. The exchange coupling constants are calculated by using the least-squares fitting method, based on the DFT-calculated energies from different spin configurations. / Ph. D. / Single molecule magnets (SMMs) are molecules of mesoscopic scale which exhibit quantum properties. Its quantum effects are used to describe the behavior of SMMs at the smallest scales. These quantum properties could also be used to reveal possible applications of SMMs to high-density information storage, molecular spintronics, and quantum information science. Thus SMMs are of interest to physicists, chemists, and engineers. Recently, electron transport via individual SMMs was achieved in experiments. Electron transport is obviously affected by the magnetic properties of the SMM, thus one can examine magnetic properties of an SMM indirectly by measuring electron transport via the SMM. In this thesis, two types of SMMs, Eu2(C8H8)3 and Ni9Te6(PEt3)8, are investigated theoretically by simulating their electron transport properties. An extended metal atom chain (EMAC) consists of a string of metallic atoms with organic ligands surrounding the string. EMACs are an important research field for nanoelectronics. Homometallic iron-based EMACs are especially attractive due to the high spin and large magnetic anisotropy of iron(II). If a molecule has magnetic anisotropy, its magnetic properties change with the direction of its magnetic moment. We explore how iron atoms interact with each other in the EMACs [Fe2(mes)2(dpa)2] and [Fe4(tpda)3Cl2]. Chapter 1 provides an introduction to SMMs, electron transport experiments via SMMs and an approximation method, density functional theory (DFT). DFT is a method to approximate electronic structure and magnetic properties of various many-body systems. Chapter 2 investigates theoretical electron transport via Eu2(C8H8)3. Eu2(C8H8)3 changes its type of magnetic anisotropy when it obtains an extra electron, which is different from most SMMs. If the Eu2(C8H8)3 is short of an extra electron, its magnetization direction is in-plane, that is, its magnetic energy is lowest when its magnetic moment is along any direction in a specific plane. If an extra electron is captured by Eu2(C8H8)3, its magnetization direction becomes out-of-plane, and its lowest energy is obtained when its magnetic moment is along the direction normal to the specific plane. The unique magnetic properties lead to blockade effects at low bias: the current through this molecule is completely suppressed until the bias voltage exceeds a certain value. The bias voltage on a molecule equals the electrical potential difference between two ends of the molecule. Chapter 3 investigates theoretical electron transport via Ni9Te6(PEt3)8. Magnetic anisotropy of Ni9Te6(PEt3)8 is cubic symmetric, and its symmetry is higher than most SMMs. With appropriate magnetic anisotropy parameters, in the presence of an external magnetic field, uncommon phenomena are observed. These phenomena include (1) current is completely suppressed when bias is low; (2) current via SMM decreases while bias on SMM increases; (3) there are discontinuous lines in the figures that describe electrical conductance of current. Chapter 4 examines the iron atoms’ interaction strength in both [Fe2(mes)2(dpa)2] and [Fe4(tpda)3Cl2]. Reasonable spin Hamiltonians are used to describe the energy of EMACs. Considering all possible directions of the spins of iron atoms in two EMACs, we calculate the energy of every possible spin configuration using DFT. The energy of each spin configuration can be expressed as an equation containing one or more coupling constants. We apply the least-squares fitting method to obtain the values of the coupling constants in the spin Hamiltonians.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/87532
Date07 February 2019
CreatorsLuo, Guangpu
ContributorsPhysics, Park, Kyungwha, Robinson, Hans D., Scarola, Vito W., Huber, Patrick
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf, application/pdf, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0024 seconds