Return to search

Identification and Analysis of Germination-Active Proteins in Bacillus Spores

Many spore forming bacteria are the causative agents of severe disease, such as Bacillus anthracis and anthrax. In these cases, the spore often acts as the infectious agent. Spores boast extreme resistance to chemical and UV damage among other bactericidal conditions. This is problematic due to the difficulty and economic costs of decontaminating exposure sites. The present work focuses on identifying and characterizing proteins active within spore germination, with a focus towards understanding the triggering of the major stages of germination. Understanding how each stage is initiated could allow for development of methods that induce these processes to efficiently germinate spores, thus facilitating cheap and effective decontamination.

Sequencing of a spore transposon insertion library after exposure to germinants led to the identification of 42 genes with previously uncharacterized roles in spore germination. Fourteen of the genes, encoding proteins associated with the inner spore membrane, were further characterized. Mutants lacking these genes portrayed phenotypes consistent with failure of a GerA receptor-mediated germination response, and these genes affect the earliest stages of germination.

Chemical cross-linking was used to characterize protein interactions important for stage II of spore germination. Site-directed in vivo crosslinking indicated that YpeB may exist as a multimer within the dormant spore. Further investigation of individual protein domains using bacterial two-hybrid analysis suggested that both N- and C-terminal domains of YpeB contribute to the formation of a multimer. In addition, the uncharacterized YpeB N-terminal domain was demonstrated to have strong self-association and may mediate self-association within the dormant spore.

Additional genes that contribute to efficient initiation of spore germination in a GerA-dependent manner were identified via TnSeq. Chemical cross-linking of dormant spores was implemented to characterize protein interactions leading to stabilization and activation of an important enzyme that contributes to cortex degradation in stage II of germination. The presented studies employed a variety of techniques to provide additional insight into both stages of spore germination with a goal of furthering understanding of specific events that contribute to a loss of spore dormancy. / Doctor of Philosophy / Few bacterial species can undergo a specialized division process leading to the generation of a bacterial endospore. Endospores are dormant cells that boast resistance to a variety of environmental conditions that would otherwise cause bacterial cell death. These resistance traits make endospores immune to traditional bactericidal methods, making decontamination a nontrivial task. Further complicating the matter, spores are often the infectious particle of the associated disease, including hospital acquired diarrhea, infant botulism, anthrax, and many others. Presented work focuses on furthering understanding the process by which a dormant spore returns to a typical growing bacteria cell. Comprehension of major steps in this process may lead to novel methods for spore cleanup in which mechanisms within the spore are subverted to force a return to a typical bacterial cell state.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/90885
Date02 July 2019
CreatorsSayer, Cameron Vincent
ContributorsBiological Sciences, Popham, David L., Schubot, Florian D., Caswell, Clayton C., Stevens, Ann M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0168 seconds