Return to search

Measurement of Driver Preferences and Intervention Responses as Influenced by Adaptive Cruise Control Deceleration Characteristics

In comparison to conventional cruise control, adaptive cruise control (ACC) vehicles are capable of sensing forward traffic and slowing to accommodate as necessary. When no forward vehicles are present, ACC function is the same as conventional cruise control. However, with ACC, when a slower vehicle is detected, the ACC system will decelerate and follow at a selected time-based distance. While slowing to follow, the driver will experience a system-controlled deceleration of the ACC vehicle. An experiment was conducted to evaluate driver preferences for the distance at which the primary deceleration occurs and the level of deceleration that is obtained. Driver intervention was required in one trial and driver response behavior was measured. Ten men and ten women in two age groups evaluated the decelerations from a cruise speed of 70mph to a following speed of 55mph behind a confederate lead vehicle on the highway. Evaluations can be made using four scales: Good vs. Bad, Comfortable vs. Uncomfortable, Jerky vs. Smooth, and Early vs. Late. Decelerations of approximately 0.06g which occur approximately 200ft to 250ft behind the lead vehicle were most preferred. Prior to intervention, foot position ranged from a point directly below the brake pedal to 16.4in from the brake pedal. Foot motion began between 21.12s time-to-collision (TTC) and 3.97s TTC. Eighty percent of the participants paused to "cover" the brake before final motion to activate the brake. The older age group intervened (braked) later than the younger age group. Driver braking after intervention ranged from 0.16g to 0.32g. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/9751
Date12 August 1998
CreatorsMcLaughlin, Shane Brendan
ContributorsIndustrial and Systems Engineering, Dingus, Thomas A., Barfield, Woodrow S., Serafin, Colleen
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationSMCLAUGH.pdf

Page generated in 0.0027 seconds