Return to search

Feasibility of using Waste Heat as a power source to operate Microbial Electrolysis Cells towards Resource Recovery

Wastewater treatment has developed as a mature technology over time. However, conventional wastewater treatment is a very energy-intensive process. Bioelectrochemical system (BES) is an emerging technology that can treat wastewater and also recover resources such as energy in the form of electricity/hydrogen gas and nutrients such as nitrogen and phosphorus compounds. Microbial electrolysis cell (MEC) is a type of BES that, in the presence of an additional voltage, can treat wastewater and generate hydrogen gas. This is a promising approach for wastewater treatment and value-added product generation, though it may not be sustainable in the long run, as it relies on fossil fuels to provide that additional energy. Thus, it is important to explore alternative renewable resources that can provide energy to power MEC. Waste heat is one such resource that has not been researched extensively, particularly at the low-temperature spectrum. This was utilized as a renewable resource by converting waste heat to electricity using a device called thermoelectric generator (TEG). TEG converted simulated waste heat from an anaerobic digester to power an MEC. The feasibility of TEG to act as a power source for an MEC was investigated and its performance compared to the external power source. Various cold sources were analyzed to characterize TEG performance. To explore this integrated TEG-MEC system further, a hydraulic connection was added between the two systems. Wastewater was used as a cold source for TEG and it was recirculated to the anode of the MEC. This system showed improved performance with both systems mutually benefitting each other. The operational parameters were analyzed for the optimization of the system. The integrated system could generate hydrogen at a rate of 0.36 ± 0.05 m3 m-3 d-1 for synthetic domestic wastewater treatment. For the practical application, it is necessary to estimate the cost and narrow the focus on the functions of the system. Techno-economic analysis was performed for MEC with cost estimation and net present value model to understand the economic viability of the technology. The application niche of the BES was described and directions for addressing the challenges towards a full-scale operation were discussed. The present system provides a sustainable method for wastewater treatment and resource recovery which can play an important role in human health, social and economic development and a strong ecosystem. / Doctor of Philosophy / An average person produces about 50-75 gallons of wastewater every day. In addition to the households, wastewater is generated from industries and agricultural practices. As the population increases, the quantity of wastewater production will inevitably increase. To keep our rivers and oceans clean and safe, it is essential to treat the wastewater before it is discharged to the water bodies. However, the conventional wastewater treatment is a very energy (and thus cost) intensive process. For low-income and developing parts of the world, it is difficult to adapt the technology everywhere in its present form. Furthermore, as the energy is provided mostly by fossil fuels, their limited reserves and harmful environmental effects make it critical to find alternative methods that can treat the wastewater at a much lower energy input. For a circular and sustainable economy, it is important to realize wastewater as a resource which can provide us energy, nutrients, and water, rather than discard it as a waste. Bioelectrochemical systems (BES) is an emerging technology that can simultaneously treat wastewater and recover resources in the form of electricity/hydrogen gas, and nitrogen and phosphorus compounds. Microbial electrolysis cell (MEC) is a type of BES that is used to treat wastewater and generate hydrogen gas. An additional voltage is supplied to the MEC for producing hydrogen. In the long run, this may not be sustainable as it relies on fossil fuels to provide that additional energy. Thus, it is important to explore alternative renewable resources that can provide energy to power MEC. Waste heat is a byproduct of many industrial processes and widely available. This was utilized as a renewable resource by converting waste heat to electricity using a device called thermoelectric generator (TEG). TEG converted simulated waste heat from an anaerobic digester to power an MEC. The mutual benefit for MEC and TEG was also explored by connecting the system electrically and hydraulically. Cost-estimation of the system was performed to understand the economic viability and functions of the system were developed. The present system provides a sustainable method for wastewater treatment and resource recovery which can play an important role in human health, social and economic development and a strong ecosystem.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/97977
Date05 May 2020
CreatorsJain, Akshay
ContributorsCivil and Environmental Engineering, He, Zhen, Huang, Haibo, Wang, Zhiwu, Dietrich, Andrea M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0029 seconds