Return to search

Understanding the Impact of a Serrated Trailing Edge on the Unsteady Hydrodynamic Field

Trailing edge noise is a common noise source in aerodynamic applications, such as wind turbines, duct fan blades, and propellers. As sound is a nuisance for people near this machinery, methods of reducing trailing edge noise are being investigated. A proven method of trailing edge noise reduction is using a serrated trailing edge. Many prior experiments have shown that a trailing edge with sawtooth serrations can reduce trailing edge noise compared to a straight trailing edge, but the mechanism by which sawtooth serrations reduce noise is not fully understood. Previous theoretical models have assumed that the turbulence field convecting past a serrated trailing edge is unchanged by the presence of the serrations, but experiments have shown that this is not the case in reality. This work attempts to further explore the mechanisms behind why trailing edge serrations reduce trailing edge noise. Additionally, it evaluates the usefulness of a wall jet wind tunnel for use in the study of serrated trailing edges. Experiments were conducted in an anechoic wall jet wind tunnel using a straight trailing edge configuration and a serrated trailing edge configuration. It was found that there may be differences in the unsteady surface pressure over serrated edges in one-sided flows as compared to two-sided flows, like on that of an airfoil, most notably in relation to the magnitude of the unsteady pressure on the serrations. In the wall jet and in agreement with other studies, it was found that the unsteady pressure fluctuations increase towards the tip of the serration in one-sided flows. This is counter to what is found in some studies of two-sided flows. Good agreement was found between some models of the wavenumber-frequency wall pressure spectrum of a turbulent boundary layer and the measured wall pressure spectrum on the straight trailing edge, and these models also produced good predictions of the noise produced by this trailing edge using Amiet's equation. A surface pressure microphone array was used to estimate the zero spanwise wavenumber surface pressure spectrum. This spectrum was used in Amiet's method to predict the measured trailing edge noise. Predictions using the wavenumber-filtered measurement tended to overpredict the measured far field noise most likely due to the inclusion of broader wavenumber content through the array's side lobe response and the breadth of the main lobe. The serrated trailing edge was found to increase coherence between two points on the same serration while reducing coherence between two points on different serrations. It was concluded that the presence of the serrations decorrelates small-scale turbulent eddies. Additionally, it was found that while the serrated trailing edge did reduce the noise produced, its destructive effect on the geometry-based resonance of the straight trailing edge configuration may have amplified the magnitude of the reduction. Finally, it was concluded that the serrations do indeed affect the hydrodynamic field near the trailing edge, and the theoretical models which make the assumption otherwise must be refined. / Master of Science / Trailing edge noise is a common noise source in aerodynamic applications, such as wind turbines, duct fan blades, and propellers. As sound is a nuisance for people near this machinery, methods of reducing trailing edge noise are being investigated. A proven method of trailing edge noise reduction is using a serrated trailing edge. Many prior experiments have shown that a trailing edge with sawtooth serrations can reduce trailing edge noise compared to a straight trailing edge, but the mechanism by which sawtooth serrations reduce noise is not fully understood. This work attempts to further explore the mechanisms behind why trailing edge serrations reduce noise. Experiments were conducted in an anechoic wind tunnel facility. It was found that a one-sided flow over a serrated trailing edge may be significantly different from that over a two-sided flow. Good agreement was found between prediction models and measurements of trailing edge noise. The serrated trailing edge was effective at reducing the coherence of turbulent eddies across the roots of the sawtooth serrations. It was concluded that the serrated trailing edge is effective at reducing noise, and that one means of doing so is decreasing the correlation of small-scale turbulent eddies, and that current models of the flow over serrations may need to be refined.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/99965
Date15 September 2020
CreatorsLetica, Stefan Josip
ContributorsAerospace and Ocean Engineering, Alexander, William Nathan, Devenport, William J., Lowe, K. Todd
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0013 seconds