Return to search

Three-Dimensional Optimization of Touch Panel Design with Combinatorial Group Theory

This thesis documents the optimized design of a touch screen using infrared technology as a three dimensional problem. The framework is fundamentally built on laser diode technology and introduces mirrors for signal reflection. The rising popularity of touch screens are credited to the naturally intuitive control of display interfaces, extensive data presentation, and the improved manufacturing process of various touch screen implementations. Considering the demands on touch screen technology, the design for a large scaled touch panel is inevitable, and signal reduction techniques become a necessity to facilitate signal processing and accurate touch detection. The developed research model seeks to capture realistic touch screen design limitations to create a deploy-able configuration. The motivation of the problem stems from the significant reduction of representation achieved by combinatorial group theory. The research model is of difficulty NP-complete. Additional exclusive-or functions for uniqueness, strengthening model search space, symmetry eliminating constraints, and implementation constraints are incorporated for enhanced performance. The computational results and analysis of objectives, valuing the emphasis on diodes and layers are evaluated. The evaluation of trade-off between diodes and layers is also investigated.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/5372
Date January 2010
CreatorsKong, Christie
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0018 seconds